Bisection method using ode23

3 ビュー (過去 30 日間)
Francesca Sbarbati
Francesca Sbarbati 2021 年 10 月 21 日
回答済み: Francesca Sbarbati 2021 年 10 月 22 日
Hi! I must use the shooting method by using bisection method to find root of f(s).
When I put "[x,u]= nlshoot1(10,0,2,0.01);" in the command window to verify the efficience, I get some errors.
I've tried as follows:
function [x,u]= nlshoot1(N,a0,b0,tol)
epi=exp(pi);
ak=a0;
bk=b0;
sk=(ak+bk)/2;
h=pi/N;
x=0:h:pi;
[xx,uv]= ode23(@fun,x,[ak 2*ak]);
fak=uv(N+1,1)-epi;
[xx,uv]= ode23(@fun,x,[bk 2*bk]);
fbk=uv(N+1,1)-epi;
[xx,uv]= ode23(@fun,x,[sk 2*sk]);
fk=uv(N+1,1)-epi;
afk=abs(fk);
while afk>=tol
if fak*fbk<0
sk=(ak+bk)/2;
[xx,uv]= ode23(@fun,x,[sk 2*sk]);
fk=uv(N+1,1)-epi;
if fk==0
%I have a root
else
if fk*fak<0
bk=sk;
else
ak=sk;
[xx,uv]= ode23(@fun,x,[sk 2*sk]);
fk=uv(N+1,1)-epi;
end
end
else
end
afk=abs(fk);
end
u=uv(:,1);
end
function uvp= fun(x,uv)
uvp=[uv(2); (exp(-x)/2*(uv(2)^2+uv(1)^2))-(exp(-x)/2+cos(x)+2*sin(x))];
%u is the first component and v is the second component
end

回答 (1 件)

Francesca Sbarbati
Francesca Sbarbati 2021 年 10 月 22 日
I solve this problem choosing a good value of a0 and b0.
I write in the Command window the following commands:
[x,u]= nlshoot1(10,0,1.01,0.001);
y=exp(x)+sin(x); %to compare the solution
plot(x,u,'r*',x,y,'k-')

カテゴリ

Help Center および File ExchangeProgramming についてさらに検索

製品


リリース

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by