Find Q-criterion and Lambda2 from velocity values

49 ビュー (過去 30 日間)
Hussein Kokash
Hussein Kokash 2021 年 10 月 19 日
編集済み: Nick Battista 2024 年 5 月 15 日
Hello everyone, hope you are doing great.
I have a matlab code which reads a file that has x, y and z velocity values, as well as corresponding time for each value this is what it looks like:
clear all; clc
[file_list, path_n] = uigetfile('.txt', 'Multiselect', 'on');
filesSorted = natsortfiles(file_list);
if iscell(filesSorted) == 0;
filesSorted = (filesSorted);
end
for i = 1:length(filesSorted);
filename = filesSorted{i};
data = load([path_n filename]);
% Define x and y from the uploaded files
x = data (:,1);
y = data (:,2);
% Define Time for each value of the uploaded files
Time(i) = data (1,3);
Time_tp = Time';
end
Is there a way to get Lambda2 "λ" and Q-criterion values from the velocity data?
Thank you so much, stay safe

回答 (1 件)

Martino Pinto
Martino Pinto 2024 年 1 月 5 日
編集済み: Martino Pinto 2024 年 1 月 5 日
Hi! Here's a couple of functions that will do it:
function lambda2 = computeL2Criterion(u,v,w,grid_h)
% Computes the lambda2 criterion from the cartesian velocity
% field u,v,w and the grid spacing grid_h
[du_dx, du_dy, du_dz] = gradient(u,grid_h);
[dv_dx, dv_dy, dv_dz] = gradient(v,grid_h);
[dw_dx, dw_dy, dw_dz] = gradient(w,grid_h);
lambda2 = zeros(size(u));
for i = 1:size(u, 1)
for j = 1:size(u, 2)
for k = 1:size(u, 3)
% Calculate the symmetric and anti-symmetric parts of the velocity gradient tensor
S = [du_dx(i,j,k), (du_dy(i,j,k) + dv_dx(i,j,k)) / 2, (du_dz(i,j,k) + dw_dx(i,j,k)) / 2;
(dv_dx(i,j,k) + du_dy(i,j,k)) / 2, dv_dy(i,j,k), (dv_dz(i,j,k) + dw_dy(i,j,k)) / 2;
(dw_dx(i,j,k) + du_dz(i,j,k)) / 2, (dw_dy(i,j,k) + dv_dz(i,j,k)) / 2, dw_dz(i,j,k)];
Omega = [0, (du_dy(i,j,k) - dv_dx(i,j,k)) / 2, (du_dz(i,j,k) - dw_dx(i,j,k)) / 2;
(dv_dx(i,j,k) - du_dy(i,j,k)) / 2, 0, (dv_dz(i,j,k) - dw_dy(i,j,k)) / 2;
(dw_dx(i,j,k) - du_dz(i,j,k)) / 2, (dw_dy(i,j,k) - dv_dz(i,j,k)) / 2, 0];
M = S*S + Omega*Omega; % Combine deformation and rotation
eigenvalues = eig(M);
eigenvalues = sort(eigenvalues, 'descend');
lambda2(i,j,k) = eigenvalues(2);
end
end
end
end
function Q = computeQCriterion(U, V, W, grid_h)
% Computes the lambda2 criterion from the cartesian velocity
% field u,v,w and the grid spacing grid_h
[dxU, dyU, dzU] = gradient(U, grid_h);
[dxV, dyV, dzV] = gradient(V, grid_h);
[dxW, dyW, dzW] = gradient(W, grid_h);
S_xx = dxU;
S_yy = dyV;
S_zz = dzW;
S_xy = 0.5 * (dyU + dxV);
S_xz = 0.5 * (dzU + dxW);
S_yz = 0.5 * (dzV + dyW);
Omega_xy = 0.5 * (dyU - dxV);
Omega_xz = 0.5 * (dzU - dxW);
Omega_yz = 0.5 * (dzV - dyW);
Q = 0.5 * ((Omega_xy.^2 + Omega_xz.^2 + Omega_yz.^2) - ...
(S_xx.^2 + S_yy.^2 + S_zz.^2 + 2*(S_xy.^2 + S_xz.^2 + S_yz.^2)));
end
  2 件のコメント
William Thielicke
William Thielicke 2024 年 2 月 15 日
How would computeQCriterion look like if the data is only 2-dimensional (U and V)?
Nick Battista
Nick Battista 2024 年 5 月 14 日
編集済み: Nick Battista 2024 年 5 月 15 日
I believe Q-Criterion in two-dimensions would look like the following (PS- thanks for PIVlab; love it!)
function Qcrit = give_Me_Q_Criterion(U,V,dx,dy)
% U: horizontal component of velocity field (matrix)
% V: vertical component of velocity field (matrix)
% dx,dy: grid spacing
% Function that computes partial derivative of U with respect to x
dudx = D(U,dx,'x'); 
% Function that computes partial derivative of V with respect to x
dvdx = D(V,dx,'x');
% Function that computes partial derivative of U with respect to y
dudy = D(U,dy,'y');
% Function that computes partial derivative of V with respect to y
dvdy = D(V,dy,'y');
%-------------------------------------------------------
% Q Criterion (2d) = -Uy.*Vx - 0.5*Ux.^2 -0.5*Vy.^2
%-------------------------------------------------------
Qcrit = -dudy.*dvdx - 0.5*dudx.^2 - 0.5*dvdy.^2;

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeAsynchronous Parallel Programming についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by