Function Approximation and Interpolation
12 ビュー (過去 30 日間)
古いコメントを表示
Given: f(x) = exp(-x^2) on the interval [-1; 1].
Need to:
- Approximate f(x) by a 9-degree monomial basis polynomial interpolant with equidistant nodes. Proceed as follows:
1.1. create a vector x containing the n = 9 interpolation nodes.
1.2. use the function 'vander' to create the interpolation matrix G.
1.3. compute yi = f(xi) at the n interpolation nodes.
1.4. compute the n basis coefficients c.
2. Evaluate the accuracy of the interpolant, say f1, as follows:
2.1. Use the Matlab function 'polyval' to evaluate f1 for 100 evenly distributed points on [-1; 1].
2.2. Compare these interpolated values with the 'true' values of f.
2.3. Plot the approximation error.
So far, could this. But no idea whether they are correct or not. Don't even understand what should do in 2.2 and 2.3
f = @(x) exp(-x.^2);
n = 9;
y = linspace(-1, 1, n);
z = [];
for i = 1:length(y)
z(i) = feval(f,y(i));
end
v = fliplr(vander(y));
a = v\z';
b = a(end:-1:1)';
%5
c = linspace(-1,1);
d = polyval(b, c);
p = polyfit(c,d);
0 件のコメント
採用された回答
David Hill
2021 年 10 月 11 日
Something like this.
f = @(x) exp(-x.^2);
x = linspace(-1, 1, 9);
G=vander(x);
y=f(x);
c=G\y';
f1=@(x)polyval(c,x);
t=linspace(-1,1,100);
Error=(f(t)-f1(t))./f(t);
plot(t,Error)
0 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Polynomials についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!