Newton's Method for nonlinear system vector operation.
8 ビュー (過去 30 日間)
古いコメントを表示
when i was doing newton's method for nonlinear system, when I entered following code it tells me that it could not do subtraction between two vectors with different dimension. The thing is F is a 2x1 vector, and J is jacobian matrix of F which is 2x2. so I dont know what is going on with my code. the following is the code.
a = newton(@F, @J, [1,1])
=========================================
function y = newton(f,j,x)
step = 1;
finalstep = 10;
y = zeros (2,1);
while step < finalstep
d = j(x)\(-f(x));
y = x + d;
disp(y);
x = y;
end
end
==========================================
function f = F(x)
x1 = x(1);
x2 = x(2);
f = zeros(2,1);
f(1) = x1^2-x2^2+2*x2; % f1(x1,x2)
f(2) = 2*x1+x2^2-6; % f2(x1,x2);
end
==========================================
function j = J(x)
x1 = x(1);
x2 = x(2);
j = zeros(2,2);
j(1,1) = 2*x1; % df1x1
j(1,2) = -2*x2+2; % df1x2
j(2,1) = 2; % df2x1
j(2,2) = 2*x2; % df2x2;
end
0 件のコメント
採用された回答
Geoff Hayes
2014 年 9 月 25 日
Lechen - if I run through your code, I observe the following error
Error using +
Matrix dimensions must agree.
Error in newton.m
y = x + d;
because x is a 1x2 matrix and d is a 2x1 matrix. The simplest fix for this is to just change the input x from a 1x2 matrix to one that is 2x1
a = newton(@F, @J, [1;1])
That will fix the error message. Now look closer at the newton function
function y = newton(f,j,x)
step = 1;
finalstep = 10;
y = zeros (2,1);
while step < finalstep
d = j(x)\(-f(x));
y = x + d;
disp(y);
x = y;
end
end
Note how the code does not increment the step local variable, so the code will become stuck in an infinite loop. Add a line to increment this variable. Also, consider adding it a line of code that compares x and y - if the difference between the two vectors (for each element) is less than some tolerance, then assume that no better solution will be found and so break out of the loop. The above then becomes something like
function y = newton(f,j,x)
step = 1;
finalstep = 10;
y = zeros (2,1);
tol = 1e-5;
while step < finalstep
d = j(x)\(-f(x));
y = x + d;
disp(y);
% increment step
step = step + 1;
% compare each element of x and y
exitEarly = true;
for k=1:length(x)
if abs(x(k)-y(k))>tol
% pair k exceeds tolerance so do not exit
% early
exitEarly=false;
end
end
if exitEarly
break;
end
x = y;
end
end
Try the above and see what happens!
その他の回答 (1 件)
Andrei Bobrov
2014 年 9 月 25 日
編集済み: Andrei Bobrov
2014 年 9 月 25 日
function x = newtonf(x,finalstep)
function out = F(x)
out = [x(1).^2-x(2).^2+2*x(2);
2*x(1)+x(2).^2-6];
end
function out = J(x)
out = [2*x(1),-2*x(2)+2;
2, 2*x(2) ];
end
step = 1;
y = [];
while step < finalstep
d = -J(x)\F(x);
x = x + d;
y = [y, x];
step = step + 1;
end
disp(y);
end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!