Why is the polyval command giving two different answers?
16 ビュー (過去 30 日間)
古いコメントを表示
Why does the polyval operator not work as expected. Is the ans variable not stored as a column vector? Why aren't the second, fifth, and sixth results equal?
>> roots([1,-8,17,2,-24])
ans =
4.0000
3.0000
2.0000
-1.0000
>> polyval([1.-8,17,2,-24],ans)
ans =
-192.0000
-54.0000
-8.0000
-2.0000
>> roots([1,-8,17,2,-24])
ans =
4.0000
3.0000
2.0000
-1.0000
>> x=ans
x =
4.0000
3.0000
2.0000
-1.0000
>> polyval([1,-8,17,2,-24],x)
ans =
1.0e-13 *
0.8882
0.3197
0.0355
0.1421
>> polyval([1,-8,17,2,-24],[2.0000;3.0000;-1.0000;3])
ans =
0
0
0
0
0 件のコメント
採用された回答
Alberto
2014 年 9 月 22 日
Instruction roots uses an iterative numeric method to approximate the solution in float arithmetic. What you get is an excellent approximation.
If you need the exact solution you should try a symbolic method:
g = x^4-8*x^3 + 17*x^2 +2*x -24
g =
x^4 - 8*x^3 + 17*x^2 + 2*x - 24
>> sol=solve(g==0)
sol =
2
3
4
-1
1 件のコメント
Matt J
2014 年 9 月 23 日
You also may need a symbolic version of polyval, even when you have the exact roots:
>> polyval([1,-8,17,2,-24]/3,[4 3 2 -1])
ans =
1.0e-14 *
0.8882 0.1776 0.1776 0.1776
参考
カテゴリ
Help Center および File Exchange で Entering Commands についてさらに検索
製品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!