Why does quatrotate() produce negative rotations?

10 ビュー (過去 30 日間)
Dereck
Dereck 2014 年 9 月 19 日
コメント済み: James Tursa 2020 年 2 月 7 日
Code
% YPR angles to rotate
yaw = pi/4;
pitch = 0;
roll = 0;
% Point to rotate
A = [ 1 0 0]
% Rotate (Negative)
Q = angle2quat(yaw, pitch, roll);
B = quatrotate(Q, A)
% Rotate (Expected result)
Q = angle2quat(-yaw, -pitch, -roll);
C = quatrotate(Q, A)
Results:
A =
1 0 0
B =
0.7071 -0.7071 0
C =
0.7071 0.7071 0

採用された回答

Mischa Kim
Mischa Kim 2014 年 9 月 19 日
Hello Dereck, there is a difference between a) rotating a reference frame (e.g. relative to a "fixed" vector) and b) rotating a vector relative to a reference frame. Check out this answer for reference.
angle2quat converts rotation angles [to quaternions]. Rotation angles in turn are used to rotate reference frames a), not vectors b). To illustrate, if you do not convert to quaternions but keep working with rotation angles and matrices you could do the same by computing the direction cosine matrix, DCM:
DCM = angle2dcm(yaw,pitch,roll)
DCM =
0.707106781186548 0.707106781186547 0
-0.707106781186547 0.707106781186548 0
0 0 1.000000000000000
rotate_Frame = DCM*A'
ans =
0.707106781186548
-0.707106781186547
0
which, as pointed out above, rotates the reference frame relative to the vector.
If you need to rotate the vector instead, use rotx and equivalent:
rotate_Vector = rotz(yaw*180/pi)*roty(pitch*180/pi)*rotx(roll*180/pi)*A'
ans =
0.707106781186547
0.707106781186547
0
  3 件のコメント
Tamas Sarvary
Tamas Sarvary 2019 年 1 月 24 日
You could rotate your vectors by the inverse quaternion:
c = quatrotate(quatinv(Q), A)
James Tursa
James Tursa 2020 年 2 月 7 日
See also this post. The quatrotate function should probably use the phrase "coordinate system transformation" instead of the phrase "rotated vector".

サインインしてコメントする。

その他の回答 (0 件)

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by