Fit a square root function to data
25 ビュー (過去 30 日間)
古いコメントを表示
I would like to fit a function of form y=K*x^.5+c, where Matlab finds the best fit values of K&c. What's the best way to do this? Thanks!
0 件のコメント
回答 (1 件)
Star Strider
2014 年 9 月 15 日
編集済み: Star Strider
2014 年 9 月 15 日
Your function is actually linear, so you can use any linear regression function such as the Statistics Toolbox regress function, since it supplies several statistics on the fit.
Otherwise, use the mldivide function or ‘\’ operator. Assuming x and y are row vectors in your original data:
x = linspace(0, 10, 15); % Create Data
y = 3.*sqrt(x)+5 + 0.1*randn(size(x)); % Create Data
p = [sqrt(x)' ones(size(y'))]\y'; % Estimate Parameters
The vector of estimated parameters correspond to p(1)=K and p(2)=c.
If x and y are column vectors, eliminate the transpose (') operators in the ‘p’ calcualation.
You can also use polyfit and its friends, remembering to use sqrt(x) instead of x in the argument list:
yp = polyfit(sqrt(x), y, 1);
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Linear and Nonlinear Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!