Why x*V is different by the V*D when I use the eig function?

2 ビュー (過去 30 日間)
Traian Preda
Traian Preda 2014 年 9 月 11 日
コメント済み: Matt J 2014 年 9 月 11 日
Hi,
I have the following x matrix. And I try to get the right eigenvectors of it using eig? It seems that when I do the product x*V=V*D the results are different. Have this to do with the fact that my matrix is not symmetric? In this case is any option of the eig function to get me the proper right eigenvectors. Thank you
x=[ [-0.308342500000000 -0.00214464000000000 0.0151461300000000 0.00824288000000000 0.00989276000000000 0.0124386100000000 0.00264512000000000 0.00866431000000000 0.0116075100000000 0.00320392000000000 0.00278671000000000 0.00149626000000000;-0.00265658000000000 -0.121676300000000 0.00564436000000000 0.00238015000000000 0.00424764000000000 0.00588706000000000 -0.000863060000000000 0.00469262000000000 0.00678557000000000 0.000689910000000000 -0.00119440000000000 -0.00716666000000000;0.0107642900000000 0.00192612000000000 -0.320937700000000 0.00805248000000000 0.0148254700000000 0.0206676400000000 -0.00345190000000000 0.00606270000000000 0.00823877000000000 0.00199755000000000 0.00131798000000000 -0.000817610000000000;0.0508680800000000 0.0185830800000000 0.101506100000000 -1.21076200000000 0.0802179500000000 0.115666400000000 -0.00754153000000000 0.0270814400000000 0.0365313200000000 0.00948934000000000 0.00735254000000000 0.000670960000000000;0.0307724700000000 0.0142414800000000 0.0643488500000000 0.0266672900000000 -0.886164400000000 0.0810198500000000 -0.00178717000000000 0.0158865000000000 0.0213394900000000 0.00575626000000000 0.00480359000000000 0.00184064000000000;0.0233513400000000 0.0135427100000000 0.0515144600000000 0.0250104400000000 0.0468383700000000 -0.613540200000000 0.00117468000000000 0.0116026500000000 0.0155001000000000 0.00438241000000000 0.00396955000000000 0.00270523000000000;0.0559105900000000 -0.0404564600000000 0.0518365000000000 0.000652430000000000 0.0562101800000000 0.0924429400000000 -1.14120900000000 0.0398392800000000 0.0555777500000000 0.0101110600000000 0.000862140000000000 -0.0283818200000000;0.0609296000000000 0.0594911000000000 0.0504506900000000 0.0286767100000000 0.0319623200000000 0.0392238000000000 0.0120725100000000 -1.39778700000000 0.107400600000000 -0.0416587600000000 0.00800827000000000 0.0169831700000000;0.0487410800000000 0.0482542000000000 0.0402743200000000 0.0229235600000000 0.0254899100000000 0.0312555200000000 0.00972080000000000 0.0492022500000000 -1.05963200000000 -0.0526606800000000 0.00732498000000000 0.0141274000000000;0.0840965800000000 0.0520060500000000 0.0734459900000000 0.0403322100000000 0.0476786100000000 0.0596631500000000 0.0137920700000000 -0.0575738400000000 -0.0862827700000000 -1.08902400000000 -0.0306083200000000 -0.00111990000000000;0.0812610900000000 0.0172178200000000 0.0751533200000000 0.0397974000000000 0.0499812100000000 0.0637146700000000 0.0101769700000000 0.0741493400000000 0.117631700000000 -0.0109123000000000 -1.12310800000000 -0.0280327400000000;0.000943080000000000 -0.000857920000000000 0.00100616000000000 0.000488290000000000 0.000705260000000000 0.000933580000000000 1.72500000000000e-05 0.000779430000000000 0.00112694000000000 0.000114870000000000 -0.000197680000000000 -0.172684800000000;]

採用された回答

Matt J
Matt J 2014 年 9 月 11 日
編集済み: Matt J 2014 年 9 月 11 日
No, asymmetry shouldn't prevent the equation from being satisfied to within numerical precision. But I don't see a numerically significant error,
>> [V,D]=eig(x);
>> diff=x*V-V*D;
>> max(abs(diff(:)))
ans =
1.7365e-15
  6 件のコメント
Traian Preda
Traian Preda 2014 年 9 月 11 日
but then what is the V matrix from the [V,S,D]=svd(x) ?
Matt J
Matt J 2014 年 9 月 11 日
V would in that case be the left singular vectors of x, or equivalently, the eigen-vectors of x*x'. See

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by