Why x*V is different by the V*D when I use the eig function?
2 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I have the following x matrix. And I try to get the right eigenvectors of it using eig? It seems that when I do the product x*V=V*D the results are different. Have this to do with the fact that my matrix is not symmetric? In this case is any option of the eig function to get me the proper right eigenvectors. Thank you
x=[ [-0.308342500000000 -0.00214464000000000 0.0151461300000000 0.00824288000000000 0.00989276000000000 0.0124386100000000 0.00264512000000000 0.00866431000000000 0.0116075100000000 0.00320392000000000 0.00278671000000000 0.00149626000000000;-0.00265658000000000 -0.121676300000000 0.00564436000000000 0.00238015000000000 0.00424764000000000 0.00588706000000000 -0.000863060000000000 0.00469262000000000 0.00678557000000000 0.000689910000000000 -0.00119440000000000 -0.00716666000000000;0.0107642900000000 0.00192612000000000 -0.320937700000000 0.00805248000000000 0.0148254700000000 0.0206676400000000 -0.00345190000000000 0.00606270000000000 0.00823877000000000 0.00199755000000000 0.00131798000000000 -0.000817610000000000;0.0508680800000000 0.0185830800000000 0.101506100000000 -1.21076200000000 0.0802179500000000 0.115666400000000 -0.00754153000000000 0.0270814400000000 0.0365313200000000 0.00948934000000000 0.00735254000000000 0.000670960000000000;0.0307724700000000 0.0142414800000000 0.0643488500000000 0.0266672900000000 -0.886164400000000 0.0810198500000000 -0.00178717000000000 0.0158865000000000 0.0213394900000000 0.00575626000000000 0.00480359000000000 0.00184064000000000;0.0233513400000000 0.0135427100000000 0.0515144600000000 0.0250104400000000 0.0468383700000000 -0.613540200000000 0.00117468000000000 0.0116026500000000 0.0155001000000000 0.00438241000000000 0.00396955000000000 0.00270523000000000;0.0559105900000000 -0.0404564600000000 0.0518365000000000 0.000652430000000000 0.0562101800000000 0.0924429400000000 -1.14120900000000 0.0398392800000000 0.0555777500000000 0.0101110600000000 0.000862140000000000 -0.0283818200000000;0.0609296000000000 0.0594911000000000 0.0504506900000000 0.0286767100000000 0.0319623200000000 0.0392238000000000 0.0120725100000000 -1.39778700000000 0.107400600000000 -0.0416587600000000 0.00800827000000000 0.0169831700000000;0.0487410800000000 0.0482542000000000 0.0402743200000000 0.0229235600000000 0.0254899100000000 0.0312555200000000 0.00972080000000000 0.0492022500000000 -1.05963200000000 -0.0526606800000000 0.00732498000000000 0.0141274000000000;0.0840965800000000 0.0520060500000000 0.0734459900000000 0.0403322100000000 0.0476786100000000 0.0596631500000000 0.0137920700000000 -0.0575738400000000 -0.0862827700000000 -1.08902400000000 -0.0306083200000000 -0.00111990000000000;0.0812610900000000 0.0172178200000000 0.0751533200000000 0.0397974000000000 0.0499812100000000 0.0637146700000000 0.0101769700000000 0.0741493400000000 0.117631700000000 -0.0109123000000000 -1.12310800000000 -0.0280327400000000;0.000943080000000000 -0.000857920000000000 0.00100616000000000 0.000488290000000000 0.000705260000000000 0.000933580000000000 1.72500000000000e-05 0.000779430000000000 0.00112694000000000 0.000114870000000000 -0.000197680000000000 -0.172684800000000;]
0 件のコメント
採用された回答
Matt J
2014 年 9 月 11 日
編集済み: Matt J
2014 年 9 月 11 日
No, asymmetry shouldn't prevent the equation from being satisfied to within numerical precision. But I don't see a numerically significant error,
>> [V,D]=eig(x);
>> diff=x*V-V*D;
>> max(abs(diff(:)))
ans =
1.7365e-15
6 件のコメント
Matt J
2014 年 9 月 11 日
V would in that case be the left singular vectors of x, or equivalently, the eigen-vectors of x*x'. See
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!