How do I use ode45 for descriptive form?

1 回表示 (過去 30 日間)
Tawsif Khan
Tawsif Khan 2014 年 8 月 11 日
コメント済み: Tawsif Khan 2014 年 8 月 12 日
What would be the most efficient way to solve,
A1x'(t) = A2x(t), where both A1 and A2 are nxn matrices.
Both are sparse matrices and hence I want to avoid inversion.

採用された回答

Yu Jiang
Yu Jiang 2014 年 8 月 11 日
編集済み: Yu Jiang 2014 年 8 月 11 日
You may solve it as a DAE (differential algebraic equation), instead of an ODE.
This documentation (Link) mentions the DAE in the form of
M(t,y)y′ = f(t,y)
Your example is a special case of this form. It can be solved by ode15s and ode23t solvers. Using those solvers, you can directly specify the M matrix without the need to invert it.
Basically, you define a function as
function dx = mySys(t,x)
dx = A2*x;
end
Then, before you solve it using ode solvers ode15s and ode23t, specify
options = odeset('Mass',A1);
Next, apply the option when using the solver as follows
[t,y] = ode15s(@mySys,tspan,y0,options);
More examples can be found in the documentation .
  3 件のコメント
Yu Jiang
Yu Jiang 2014 年 8 月 12 日
編集済み: Yu Jiang 2014 年 8 月 12 日
I think it is because they use different numerical methods. See the following link for details:
-Yu
Tawsif Khan
Tawsif Khan 2014 年 8 月 12 日
Thanks, this really helped.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOrdinary Differential Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by