How do I use ode45 for descriptive form?
1 回表示 (過去 30 日間)
古いコメントを表示
What would be the most efficient way to solve,
A1x'(t) = A2x(t), where both A1 and A2 are nxn matrices.
Both are sparse matrices and hence I want to avoid inversion.
0 件のコメント
採用された回答
Yu Jiang
2014 年 8 月 11 日
編集済み: Yu Jiang
2014 年 8 月 11 日
You may solve it as a DAE (differential algebraic equation), instead of an ODE.
M(t,y)y′ = f(t,y)
Your example is a special case of this form. It can be solved by ode15s and ode23t solvers. Using those solvers, you can directly specify the M matrix without the need to invert it.
Basically, you define a function as
function dx = mySys(t,x)
dx = A2*x;
end
Then, before you solve it using ode solvers ode15s and ode23t, specify
options = odeset('Mass',A1);
Next, apply the option when using the solver as follows
[t,y] = ode15s(@mySys,tspan,y0,options);
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!