Wrong prediction results from feedforwardnet

4 ビュー (過去 30 日間)
Neelabh Jyoti Saharia
Neelabh Jyoti Saharia 2021 年 9 月 30 日
回答済み: Anshika Chaurasia 2021 年 10 月 4 日
I made a simple feedforward net as follows:
mynet = feedforwardnet(5)
mynet.layers{1}.transferFcn = 'poslin'; % one hidden layer(5 neurons) with poslin = ReLU activation function
mynet.layers{2}.transferFcn = 'purelin'; % last layer has simply linear activation function
I want to train this Neural Network to learn a non-linear function that looks like this. So basically it is a regression problem.
So we have two inputs(u1, u2), and one output(y).
After training I get the weights and biases by:
W1 = mynet.IW{1,1}; b1 = mynet.b{1}; W2 = mynet.LW{2,1}; b2 = mynet.b{2}
Now to estimate the output, we can simply use:
inputs = [3;2] % u1 = 3, u2 = 2
y_predicted = mynet(inputs])
Y_predicted = 2.9155 % the prediction given by the NN
Fine, the prediction is good.
But when I manually checked it by forward propagation, I got different result:
Z1 = W1*[3; 2] + b1;
A1 = poslin(Z1); % applying ReLU activation function
Z2 = W2*A1 + b2;
A2 = Z2; % linear activation function
y_predicted = A2;
y_predicted = 2.2549
Should not both be the same? Am I missing something?

採用された回答

Anshika Chaurasia
Anshika Chaurasia 2021 年 10 月 4 日

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeSequence and Numeric Feature Data Workflows についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by