Can the symbolic toolbox Laplacian be used for other than cartesian coordinates?

4 ビュー (過去 30 日間)
In potential theory and elasticity theory, the Laplacian operator often appears, and is applied in all separable (orthogonal)
coordinate systems. The Laplacian-squared (del-fourth) operator also appears in elasticity theory. I know that the
Symbolic Toolbox Laplacian can be applied in cartesian coordinates (and that symbolic divergence, gradient, and
curl operators exist) but how about for other orthogonal coordinate systems such as polar, cylindrical,
spherical, elliptical, etc.? How about for the Laplacian-squared operator - has anyone tackled this even for
cartesian coordinates?

採用された回答

Tanmay Das
Tanmay Das 2021 年 10 月 20 日
Hi,
In the current scenario, I suppose there are no functions for Polar or cylindrical Laplacian. However, the developers are aware of this case. Meanwhile, you can try converting other coordinate systems into cartesian coordinate system and then use laplacian function if that is possible.
  1 件のコメント
Ken Bannister
Ken Bannister 2021 年 10 月 22 日
Tanmay - Thanks for your reply. I believe you are correct and that is a good work-around. I know that with Mathematica, the Laplacian is done in cartesian, and then they recommend (and give examples) doing a transformation of coordinates to get it into other coordinate systems. In principle that should work. I have a table showing the details for polar, cyclindrical, spherical, and a few other coordianate systems. I need to try this out with MATLAB and see how it goes.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeInterpolation についてさらに検索

製品


リリース

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by