MATLAB Answers

How to plot a (which is changing from 0-1 in 0.01 increments) vs x(2) (using a for loop and fsolve to find the solution of a nonlinear equation containing x(s) sol based on a

2 ビュー (過去 30 日間)
Victor Jimenez Carrillo
Victor Jimenez Carrillo 2021 年 9 月 16 日
コメント済み: Alan Stevens 2021 年 9 月 16 日
V=1000; Q=50; Ca0=1; k=1;
for a=0:1:0.1
f=@(x) [Q*Ca0-Q*x(1)-k*x(1)^2*(a*V); Q*x(1)-Q*x(2)-k*x(2)^2*(1-a)*V];
fsolve(f,[0.5,0.5])
end
plot(a,x(2))

回答 (1 件)

Alan Stevens
Alan Stevens 2021 年 9 月 16 日
Your first equation is a simple quadratic in x(1); your second is a quadratic in x(2) that depends on x(1), so, assuming you are only interested in the positive roots, these can be solved as follows:
V=1000; Q=50; Ca0=1; k=1;
a = 0:0.01:1;
x1 = zeros(1,numel(a));
x2 = zeros(1,numel(a));
for i=1:numel(a)
% assuming you want positive values of x1 and x2
if a(i) == 0
A = k*V;
x1(i) = Ca0;
x2(i) = (-Q + sqrt(Q^2 + 4*A*Q*x1(i)))/(2*A);
elseif a(i) == 1
A = k*V;
x1(i) = (-Q + sqrt(Q^2 + 4*A*Q*Ca0))/(2*A);
x2(i) = x1(i);
else
A1 = k*a(i)*V;
A2 = k*(1-a(i))*V;
x1(i) = (-Q + sqrt(Q^2 + 4*A1*Q*Ca0))/(2*A1);
x2(i) = (-Q + sqrt(Q^2 + 4*A2*Q*x1(i)))/(2*A2);
end
end
subplot(2,1,1)
plot(a,x1),grid
xlabel('a'),ylabel('x1')
subplot(2,1,2)
plot(a,x2),grid
xlabel('a'),ylabel('x2')
% The two equations can be expressed as:
% k*a*V*x1^2 + Q*x1 - Q*Ca0 = 0
% k*(1-a)*V*x2^2 + Q*x2 - Q*x1 = 0
  2 件のコメント
Alan Stevens
Alan Stevens 2021 年 9 月 16 日
Your equations would then be cubic polynomials. Look up help on “roots” to see how to find the values.

サインインしてコメントする。

製品


リリース

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by