Facing size error while using Reinforcement learning
2 ビュー (過去 30 日間)
古いコメントを表示
This is my code :-
% opening rcam_reinforcement_test1.slx simulink model
mdl='rcam_reinforcement_test1';
open_system(mdl)
% creating env
%open_system([mdl '/env+plant'])
obsInfo=rlNumericSpec([12 1]);
obsInfo.Name="observations";
obsInfo.Description='velx ,vely ,velz ,rollrate ,pitchrate ,yawrate ,bankangle ,pitchangle ,yawangle';
numObservations = obsInfo.Dimension();
actInfo=rlNumericSpec([3,1],...
'LowerLimit',[-25*(pi/180) -25*(pi/180) -30*(pi/180)]',...
'UpperLimit',[25*(pi/180) 25*(pi/180) 30*(pi/180)]');
actInfo.Name="controldeflection";
actInfo.Description='aileron ,tail ,ruddder';
numActions = actInfo.Dimension();
env = rlSimulinkEnv('rcam_reinforcement_test1','rcam_reinforcement_test1/RL Agent',obsInfo,actInfo);
%env.ResetFcn = @(in)localResetFcn(in);
Ts = 1.0;
Tf = 20000;
rng(0)
%creating critic layer
actionLayers = [
featureInputLayer(numActions,"Name","Action")
fullyConnectedLayer(15,"Name","hidden_act_1")
reluLayer("Name","relu_3")
fullyConnectedLayer(1,"Name","hidden_act_2")
];
stateLayers = [
featureInputLayer(numObservations,"Name","State")
fullyConnectedLayer(60,"Name","hidden_first")
reluLayer("Name","relu_1")
fullyConnectedLayer(60,"Name","hidden_second")
reluLayer("Name","relu_2")
fullyConnectedLayer(1,"Name","hidden_third")];
commonLayers = [
additionLayer(2,"Name","addition")
reluLayer("Name","relu_4")
fullyConnectedLayer(1,"Name","out_critic")];
criticNetwork = layerGraph();
criticNetwork =addLayers(criticNetwork,actionLayers);
criticNetwork =addLayers(criticNetwork,stateLayers);
criticNetwork =addLayers(criticNetwork,commonLayers);
criticNetwork = connectLayers(criticNetwork,"hidden_act_2","addition/in2");
criticNetwork = connectLayers(criticNetwork,"hidden_third","addition/in1");
% plot(criticNetwork);
% creating critic option
criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
% creating critic representation
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{'State'},'Action',{'Action'},criticOpts);
% creating action network
actNetwork=[
featureInputLayer(numObservations,"Name","Action")
fullyConnectedLayer(60,"Name","hidden_layer_first")
reluLayer("Name","relu1")
fullyConnectedLayer(36,"Name","hidden_layer_second")
reluLayer("Name","relu2")
fullyConnectedLayer(numActions,"Name","out_action")];
% creating actor option
actorOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
% creating critic representation
actor = rlDeterministicActorRepresentation(actNetwork,obsInfo,actInfo,'Observation',{'Action'},'Action',{'out_action'},actorOpts);
agentOpts = rlDDPGAgentOptions(...
'SampleTime',Ts,...
'TargetSmoothFactor',1e-3,...
'DiscountFactor',1.0, ...
'MiniBatchSize',64, ...
'ExperienceBufferLength',1e6);
%agentOpts.ExplorationModel.StandardDeviation = [0.3 0.3 0.3];
%agentOpts.ExplorationModel.StandardDeviationDecayRate = 1e-5;
agent = rlDDPGAgent(actor,critic,agentOpts);
% training conf
maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes, ...
'MaxStepsPerEpisode',maxsteps, ...
'ScoreAveragingWindowLength',20, ...
'Verbose',false, ...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',9.3123e+09);
doTraining = true;
if doTraining
% Train the agent.
trainingStats = train(agent,env,trainOpts);
else
% Load the pretrained agent for the example.
%load('WaterTankDDPG.mat','agent')
end
% validating by sim in env
simOpts = rlSimulationOptions('MaxSteps',maxsteps,'StopOnError','on');
experiences = sim(env,agent,simOpts);
######################################################################################################################
This the error that i am getting :-
Error using rl.env.AbstractEnv/simWithPolicy (line 83)
Unable to simulate model 'rcam_reinforcement_test1' with the agent 'agent'.
Error in rl.task.SeriesTrainTask/runImpl (line 33)
[varargout{1},varargout{2}] = simWithPolicy(this.Env,this.Agent,simOpts);
Error in rl.task.Task/run (line 21)
[varargout{1:nargout}] = runImpl(this);
Error in rl.task.TaskSpec/internal_run (line 166)
[varargout{1:nargout}] = run(task);
Error in rl.task.TaskSpec/runDirect (line 170)
[this.Outputs{1:getNumOutputs(this)}] = internal_run(this);
Error in rl.task.TaskSpec/runScalarTask (line 194)
runDirect(this);
Error in rl.task.TaskSpec/run (line 69)
runScalarTask(task);
Error in rl.train.SeriesTrainer/run (line 24)
run(seriestaskspec);
Error in rl.train.TrainingManager/train (line 424)
run(trainer);
Error in rl.train.TrainingManager/run (line 215)
train(this);
Error in rl.agent.AbstractAgent/train (line 77)
TrainingStatistics = run(trainMgr);
Error in rlagent_glider (line 111)
trainingStats = train(agent,env,trainOpts);
Caused by:
Error using rl.env.SimulinkEnvWithAgent>localHandleSimoutErrors (line 667)
Invalid input argument type or size such as observation, reward, isdone or loggedSignals.
Error using rl.env.SimulinkEnvWithAgent>localHandleSimoutErrors (line 667)
Unable to compute gradient from representation.
Error using rl.env.SimulinkEnvWithAgent>localHandleSimoutErrors (line 667)
Number of elements must not change. Use [] as one of the size inputs to automatically calculate the appropriate size
for that dimension.
#############################################################################################################
I am not able to figure out what is causing the error
0 件のコメント
回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!