Why the output image is not visible after k means clustering ?

1 回表示 (過去 30 日間)
MINO GEORGE
MINO GEORGE 2021 年 8 月 31 日
コメント済み: MINO GEORGE 2021 年 9 月 3 日
Here is the code,
img_folder='C:\Users\COMSOL\Documents\MATLAB\kss';
fname = dir(fullfile(img_folder,'*.jpg'))
grayImage= imread('calculi-140.jpg');
[rows, columns, numberOfColorChannels] = size(grayImage);
if numberOfColorChannels == 3
fprintf('That was a color image. I am converting it to grayscale.\n');
grayImage = rgb2gray(grayImage);
end
grayImage = imgaussfilt(grayImage);
gr= imadjust(grayImage,stretchlim(grayImage),[]);
features = extractLBPFeatures(gr);
numberOfClasses = 3; %k means clustering
indexes = kmeans(features(:), numberOfClasses);
classImage = reshape(indexes, size(features));
figure, imshow(classImage);
I am getting a white linea as the output
The input and output images are attached. Pls check and help me to solve this error. Any help is appreciated.
  1 件のコメント
KSSV
KSSV 2021 年 8 月 31 日
It is because, you are inputting an array into kmeans.
features = extractLBPFeatures(gr);
Check features, this is 1X59 array.

サインインしてコメントする。

回答 (1 件)

Sahil Jain
Sahil Jain 2021 年 9 月 3 日
Hi. As mentioned by another community member, the "extractLBPFeatures" function returns a vector of features which is why the output of your k-means is also a vector. To not have the output as a white line, you can try using "imshow(classImage, [])". This will display the minimum value of "classImage" as black and the maximum value as white.
  1 件のコメント
MINO GEORGE
MINO GEORGE 2021 年 9 月 3 日
Thank you for your reply sir. I tried imshow(classImage, []), there is no change in the output. I have attached the new output image.

サインインしてコメントする。

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by