I want the same randomly split dataset for all the network so that i can compare the results.
7 ビュー (過去 30 日間)
古いコメントを表示
Hello there.... This is my code...
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.8,'randomize');
I'm training the same dataset on three different architecture, I don't want the dataset to split different data randomly for each network. I want the same split dataset for all the network so that i can compare the results.
I want the same randomly splited data for all the network.
However, how do i use the residual 20% for the evaluation of my model obtained from the training dataset.
0 件のコメント
採用された回答
Wan Ji
2021 年 8 月 30 日
編集済み: Wan Ji
2021 年 8 月 30 日
You can save imdsTrain, imdsValidation for the first run
And then use load to get imdsTrain, imdsValidation for three different architecture
Here just run once for all
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.8,'randomize');
save imdsTrain.mat imdsTrain
save imdsValidation.mat imdsValidation
Then use load for the three different architectures.
At the beginning of each run m-file
load('imdsTrain.mat');
load('imdsValidation.mat');
2 件のコメント
Wan Ji
2021 年 8 月 30 日
編集済み: Wan Ji
2021 年 8 月 30 日
Do you know how datastore manipulates the dataset? IF so, I suggest you use rng function
rng('default'); % use fixed rand series
imds = shuffle(imds); % use the fixed rand number series to rearrange the dataset randomly
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.8);
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Signal Integrity Kits for Industry Standards についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!