Adding constraints to function plots in 2-D and 3-D

7 ビュー (過去 30 日間)
Adekunle Rotimi Adekoya
Adekunle Rotimi Adekoya 2021 年 8 月 27 日
回答済み: Wan Ji 2021 年 8 月 29 日
Hi,
I am new to Matlab.
I have the code snippet below.
Assume that I want to skip parts of the domain of f, i.e. (x,y), where x^2 + y^2 = c (c is any constant value in my code).
So, I want the mesh function to only plot functional values of the points in the domain of my function, which satisfify the above constraint.
How do I go about editing the code snippet below in order to incorporate the type of constraint defined above?
You timely assistance would be appreciated.
f = @ (x , y ) x .* sin( x .* y );
[X , Y ] = meshgrid (0:.1:5 , pi :.01* pi :2* pi );
Z = f (X , Y );
mesh (X ,Y , Z )
  1 件のコメント
Wan Ji
Wan Ji 2021 年 8 月 27 日
I feel a litlle bit confused of your question, which domain should be skipped?
x^2+y^2<c
or
x^2+y^2>c

サインインしてコメントする。

回答 (1 件)

Wan Ji
Wan Ji 2021 年 8 月 29 日
Hi,
I have translated the Cartesian to polar system so as to satisfy your requirement
f = @ (x , y ) x .* sin( x .* y );
minR = sqrt(0+pi^2);
maxR = sqrt(5^2+(2*pi)^2);
minTheta = atan2(pi,5);
maxTheta = atan2(2*pi,0);
r = linspace(minR, maxR, 101);
theta = linspace(minTheta, maxTheta, 101);
[R, T] = meshgrid(r, theta);
X = R.*cos(T);
Y = R.*sin(T);
% [X , Y ] = meshgrid (0:.1:5 , pi :.01* pi :2* pi );
Z = f (X , Y );
Z(~(X<=5 & X>=0 & Y<=2*pi & Y>=pi)) = NaN;
mesh (X ,Y , Z )

カテゴリ

Help Center および File ExchangeSurface and Mesh Plots についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by