using lsqnonlin () for solution of an nonlinear equation
3 ビュー (過去 30 日間)
古いコメントを表示
Please consider the following code:
function diff = myfun(D,Y)
t = 0:30:600;
l = length(t);
a = 0.5*0.75*10^(-4);
for i = 1:l
Yp(i)=0;
for n = 1:10
y(i,n) = exp(-D*t(i)*(pi^2)*(n^2)/(a^2))/n^2;
Yp(i) = Yp(i) + y(i,n);
end
end
diff = 1- (6*Yp/pi^2)-Y;
%function
Y = [0.0566 0.4432 0.5539 0.6783 0.7303 0.3569 0.4001 0.4278 0.4499 0.4720 ...
0.4500 0.5157 0.5237 0.5492 0.5590 0.5799 0.5890 0.6000 0.6150 0.6300...
0.6450];
D0 = 2.0*10^(-12);
options=optimset('LargeScale','on','Display','iter','MaxFunEvals',1e20,'TolFun',2e-50,'TolX',2e-50,'LevenbergMarquardt','on');
[D,resnorm,residual,exitflag,output,lambda]=lsqnonlin(@myfun,D0,[],[],options);
I am trying to get D value using the lsqnonlin() but I am getting the message:
Error using ==> feval
Undefined function or method 'diffusion' for input arguments of type 'double'.
Error in ==> lsqnonlin at 200
initVals.F = feval(funfcn{3},xCurrent,varargin{:});
Caused by:
Failure in initial user-supplied objective function evaluation. LSQNONLIN cannot continue.
Please help me with the code why I am getting this error message. What could be the better possible way to obtain the solution for D value.
0 件のコメント
採用された回答
Matt J
2014 年 7 月 26 日
編集済み: Matt J
2014 年 7 月 26 日
I suspect that the code you are running is not the code you have shown. The posted myfun(D,Y) takes 2 arguments, but you are not passing a value for Y to myfun in any way. MATLAB should be complaining that Y is missing, unless your call to lsqnonlin looks something like this,
[D,resnorm,residual,exitflag,output,lambda]=lsqnonlin(@(D) myfun(D,Y), D0,[],[],options);
Also, if D is a scalar, it would be probably be much simpler to use fminsearch instead of lsqnonlin to minimize norm(diff).
17 件のコメント
Matt J
2014 年 7 月 30 日
編集済み: Matt J
2014 年 7 月 30 日
Your code, and its output, are difficult to read. You should use the

button to format it distinctly from your text (like my posted code appears). In any case, the code you've shown is not what I ran. I'm still applying lsqnonlin to the scaled version of the problem:
fun=@(D)diffusion(D,Y);
[Dsc,Resnorm]=lsqnonlin(@(Dsc) fun((1e-10)*Dsc),D0,0,[],options);
D=Dsc*1e-10;
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Get Started with Optimization Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

