Solving two systems of DEs using the ode45 function.

27 ビュー (過去 30 日間)
Vassil Botev
Vassil Botev 2014 年 7 月 22 日
コメント済み: Vassil Botev 2014 年 7 月 23 日
I am trying to solve two systems of differential equations in variables x1, x2, x3 using the ode45 function. The equations are given below:
dx1=-2*lambda*beta*x1+2*lambda*alpha*x2+lambda^2*sigma^2;
dx2=beta*x1-(alpha+lambda*beta)*x2+lambda*alpha*x3;
dx3=2*beta*x2-2*alpha*x3;
where alpha=alpha0+alpha1*t and beta=beta0+beta1*t and alpha0, alpha1, beta0, beta1, sigma, lambda are known constants.
The values I am trying to find are X1, X2 and X3. The derivatives of these desired values are given by:
dX1=beta*x1;
dX2=alpha*x2;
dX3=x3;
I am having difficulties implementing the above using the ode45 function given that the problem is defined by two sets of simultaneous differential equations. Any suggestions as to how this can be solved would be much appreciated. Thanks.

採用された回答

Mischa Kim
Mischa Kim 2014 年 7 月 23 日
Vassil, check out
function my_ode()
alpha0 = 1;
alpha1 = 1;
beta0 = 1;
beta1 = 1;
lambda = 1;
sigma = 1;
param = [alpha0; alpha1; beta0; beta1; lambda; sigma];
[t,X] = ode45(@EOM,[0 5],[1 2 3 4 5 6],[],param);
plot(t,X(:,1))
grid
end
function dX = EOM(t,x,param)
x1 = x(1);
x2 = x(2);
x3 = x(3);
alpha0 = param(1);
alpha1 = param(2);
beta0 = param(3);
beta1 = param(4);
lambda = param(5);
sigma = param(6);
alpha = alpha0+alpha1*t;
beta = beta0+beta1*t;
dx1 = -2*lambda*beta*x1+2*lambda*alpha*x2+lambda^2*sigma^2;
dx2 = beta*x1-(alpha+lambda*beta)*x2+lambda*alpha*x3;
dx3 = 2*beta*x2-2*alpha*x3;
dX1 = beta*x1;
dX2 = alpha*x2;
dX3 = x3;
dX = [dx1; dx2; dx3; dX1; dX2; dX3];
end
  1 件のコメント
Vassil Botev
Vassil Botev 2014 年 7 月 23 日
Thanks a lot Mischa, really appreciate your help!

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differential Equations についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by