fmincon in matlab for multi objective
26 ビュー (過去 30 日間)
古いコメントを表示
Hello I am a question please
can I use fmincon function for solving multi objective linear programming in Matlab?
I want to create two m files, one of them is as objective function and the other is as constraint function and then I want to use fmincon to solve them.
can I do that? Is it true?
0 件のコメント
採用された回答
Dinghuan Zhu
2014 年 7 月 22 日
There are several approaches to tackle multi-objective optimization problems. You may refer to the following link for detailed descriptions:
If you are using the first approach "Goal attainment" mentioned in that document, you can definitely use the function "fmincon" to solve the problem as if you are solving any single-objective optimization problems.
0 件のコメント
その他の回答 (2 件)
Mohit Verma
2018 年 1 月 15 日
編集済み: Mohit Verma
2018 年 1 月 15 日
Hi Dinghuan,
Could you provide sample code that would show how we could do this? How would we do this to incorporate the pareto front, as in this example here:
https://www.mathworks.com/help/optim/ug/generate-and-plot-a-pareto-front.html
Thanks
3 件のコメント
Mohit Verma
2018 年 1 月 15 日
編集済み: Mohit Verma
2018 年 1 月 15 日
Hi Walter,
Thanks for your reply. Can't the pareto front be generated by defining an effective objective function with multiple objectives defined using weights? But the question is how reliable would such a computation be?
In my previous question the example I provided used fgoalattain to generate the pareto front. So I thought we could apply the same approach using fmincon.
Thanks
Walter Roberson
2018 年 1 月 15 日
"Can't the pareto front be generated by defining an effective objective function with multiple objectives defined using weights?"
No. Pareto front calculations depend upon the fitness of each objective being available directly. Pareto fronts are not defined by weighted values: they are defined by not making any of the goals larger by changing the locations. A change than makes one goal a million lower but raises another goal by one one-millionth still violates pareto front, but would be treated as an improvement by a weighted system.
PkStefan
2020 年 8 月 21 日
This is an old question but up to date for me. So can't you just normalize your objectives to obtain a single objective function and apply fmincon? For Normalization I'd use Min-Max Feature scaling. You could than even add weighing factors:
fun = weight1*norm(obj1)+Weight2*norm(obj2)
min(fun)
However you would need to have the minimum and maximum values of your objectives. Is this a legitimate way for applying fmincon?
Best regards, Stefan
3 件のコメント
PkStefan
2020 年 9 月 28 日
Yes I am using this approach for some of my applications. Seems to work just fine for me but calculating the min an max values takes some time, too.
Walter Roberson
2020 年 9 月 28 日
In the case of continuous functions defined over bounds, there is the prospect of taking the derivative and solving for zero and substituting those locations into the second derivative to determine whether they are min or max or saddle, and thus hope to establish the range of values that way (remember to evaluate right at the boundaries as well.)
But if you can actually do that for every function and get out numeric locations that are not parameterized by other variables, then you have the full set of locations needed to be examined to find the pareto front, without having to do any further searching.
If you get out solutions that are parameterized by other variables then sometimes you can decide whether you have a max or min (e.g. powers are all even and coefficients are all the same sign. More often you would substitute the parameterized location intothe next equations, work on analyzing the results, do more substitutionss, and so on.
But with nonlinear equations a lot of the time you simply cannot solve the derivative for zero systematically...
参考
カテゴリ
Help Center および File Exchange で Multiobjective Optimization についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!