Calculaing the table of values for function defined as an infinie series
1 回表示 (過去 30 日間)
古いコメントを表示
Chuzymatics Chuzymatics
2014 年 7 月 19 日
コメント済み: Chuzymatics Chuzymatics
2014 年 7 月 21 日
I need this code below to caluate the sum of the first 50 terms of the series :t to the power n for t value. That is, a kind of table of values for the series for t=1:10 It gives the error message: ??? Error using ==> power Matrix dimensions must agree. Please someone help % Calculating the sum of an infinite series
t =1:10;
n=0:50;
E(1,:)= sum(t.^n)
0 件のコメント
採用された回答
Jos
2014 年 7 月 19 日
編集済み: Jos
2014 年 7 月 19 日
you can use a for loop to do this
t = 1:10;
n = 0:50;
for i=1:length(t)
E(1,i)=sum(t(i).^n);
end
Cheers
Joe
4 件のコメント
Jos
2014 年 7 月 20 日
Both the method above and the one below by Roger (a lot more elegant by the way) produce exactly what you would expect
E:
51
2.25e+15
1.08e+24
1.69e+30
1.11e+35
9.70e+38
2.10e+42
1.63e+45
5.80e+47
1.11e+50
plotting E in the way you try to do will basically only show the last point as it is a lot bigger than the other points, try plotting the y axis on a logarithmic scale using semilogy(t,E), you'll get this graph
その他の回答 (1 件)
Roger Stafford
2014 年 7 月 19 日
Also you can use this:
E = sum(bsxfun(@power,1:10,(0:50)'),1);
4 件のコメント
Roger Stafford
2014 年 7 月 20 日
編集済み: Roger Stafford
2014 年 7 月 20 日
A Side Note: The value of your E(10) would be 1111...11, a string of fifty-one 1's in decimal, if it were computed exactly. This reminds me of one of the Fifty-Eighth Putnam Exam questions which posed the intriguing problem: "Let N be the positive integer with 1998 decimal digits, all of them 1; that is, N = 1111...11. Find the thousandth digit after the decimal point of the square root of N." (Surprisingly, it is solvable without using a computer.)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!