Constrained linear least squares

2 ビュー (過去 30 日間)
Hui
Hui 2014 年 7 月 1 日
編集済み: Star Strider 2014 年 7 月 1 日
Hi everyone! I have a set of data such as:
y=[0.007696733 0.004758526 0.00547575 0.009628829 0.009749457 0.009073008 0.009647521 0.009795106 0.014071997 0.014208544 0.01758061 0.015072178 0.018425671 0.019217437 0.020314108 0.018246917 0.022694743 0.041827743 0.040799924 0.033812901 0.043516698];
y(t)=y(2:n);
y(t-1)=y(1:n-1);
I want to figure out the two parameters [b,c] of: y(t)=(1+b)*y(t-1)-b/c*(y(t-1))^2
What's more the two parameters need to be over 0;
Thank you so much for reading my question!

回答 (1 件)

Star Strider
Star Strider 2014 年 7 月 1 日
編集済み: Star Strider 2014 年 7 月 1 日
It is actually nonlinear, because it is nonlinear in the parameters (the partial derivatives of the function with respect to each parameter are functions of themselves or of other parameters).
Using lsqcurvefit (Optimization Toolbox), the code is:
n = length(y);
yd = y(2:n);
yi = y(1:n-1);
f = @(B,y) (1 + B(1)).*y - (B(1)./B(2)).*y.^2; % Objective function
yp = linspace(min(yi), max(yi)); % Plot vector for ‘yi’
bc = lsqcurvefit(f, rand(2,1)*100, yi, yd, [1; 1]*eps, [Inf; Inf])
figure(1)
plot(yd, yi, 'xb')
hold on
plot(yp, f(bc,yp), '-r')
hold off
grid
The fit produces:
b = 2.989459285195542E-01
c = 3.990401160101856E-02
b/c = 7.491625942488537E+00

カテゴリ

Help Center および File ExchangeSystems of Nonlinear Equations についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by