time integration via frequency domain
24 ビュー (過去 30 日間)
古いコメントを表示
Hey!
I have been trying to get this integration by fft and dividing by 2*pi*f*i working but the amplitude is wrong all the time. Basically my code is the same as in this example: http://www.mathworks.com/matlabcentral/answers/17611-how-to-convert-a-accelerometer-data-to-displacements
So
function int_time_data = integrate(data,dt)
N1 = length(data);
N = 2^nextpow2(N1);
if N > N1
data(N1+1:N) = 0; % pad array with 0's
end
df = 1 / (N*dt); % frequency increment
Nyq = 1 / (2*dt); % Nyquist frequency
freq_data = (fftshift(fft(data)));
int_freq_data = zeros(size(freq_data));
f = -Nyq:df:Nyq-df;
for i = 1 : N
if f(i) ~= 0
int_freq_data(i) = freq_data(i)/(2*pi*f(i)*sqrt(-1));
else
int_freq_data(i) = 0;
end
end
int_time_data = ifft(ifftshift((int_freq_data)));
int_time_data = int_time_data(1:N1);
end
dt = 0.01; % seconds per sample
N = 512; % number of samples
t = 0 : dt : (N-1)*dt; % in seconds
wave_freq = 17.1; % in Hertz
data = sin(2*pi*wave_freq*t);
integrated_time_data = integrate(data,dt);
integrated_time_data_analytical = -1/(2*pi*wave_freq)*cos(2*pi*wave_freq*t);
plot(t,integrated_time_data);
hold on;
plot(t,integrated_time_data_analytical,'-r');
But this produces wrong results. What is wrong?
1 件のコメント
回答 (3 件)
Star Strider
2014 年 6 月 25 日
You did not say what was wrong about the amplitude. I did not run that code, but see if changing the freq_data line to:
freq_data = (fftshift(fft(data)/length(data)));
solves the problem.
2 件のコメント
Star Strider
2014 年 6 月 25 日
That may be required, since according to the ifft documentation, it also normalizes by dividing the computed ifft by the length of the argument.
Antonio Leanza
2023 年 3 月 13 日
編集済み: Antonio Leanza
2023 年 3 月 13 日
The original code works well regarding that line.
Michael
2014 年 8 月 27 日
Hekseli,
You sometimes need to perform a high pass filter on your data when you convert it from acceleration to position. That should get rid of any low frequency drift you see in your results.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Fourier Analysis and Filtering についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!