Determining indices upon which a sequence of real numbers is convex

1 回表示 (過去 30 日間)
Paul Fishback
Paul Fishback 2014 年 6 月 24 日
コメント済み: Paul Fishback 2014 年 6 月 25 日
I have a vector, X, of real numbers which has a minimum at index k, where 1<k<n.
I want to determine the smallest index k1 and largest index k2, for which the sequence is strictly convex on k1,..,k,...k2. Here, convexity means 2X(i) < X(i-1)+X(i+1) for k1+1<=i<=k2-1.
In calculus terms, this question is analogous to determining the largest subinterval about a local minimum upon which the function's second derivative is positive.

採用された回答

Roger Stafford
Roger Stafford 2014 年 6 月 25 日
k1 = k+1-find(diff([x(k+1:-1:1),-inf],2)<=0,'first');
k2 = k-1+find(diff([x(k-1:n),-inf],2)<=0,'first');

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeCalculus についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by