How to extract a number of diagonals of a matrix

29 ビュー (過去 30 日間)
S. David
S. David 2014 年 6 月 6 日
編集済み: S. David 2014 年 6 月 7 日
Hello all,
I have an N-by-N matrix. I want to extract the main diagonal and d diagonals to its right and d diagonals to its left and null all other elements. How can I do that?
Thanks

採用された回答

Star Strider
Star Strider 2014 年 6 月 6 日
The diag function can do everything you want. You just have to ask it!
  10 件のコメント
S. David
S. David 2014 年 6 月 7 日
Thanks Cedric Wannaz. Yes it is a banded matrix from F, that is the term.
Star Strider
Star Strider 2014 年 6 月 7 日
Thank you. Please add your vote to Cedric’s answer.
I didn’t catch the banded matrix. It’s been a while since I encountered them.

サインインしてコメントする。

その他の回答 (2 件)

Cedric
Cedric 2014 年 6 月 7 日
編集済み: Cedric 2014 年 6 月 7 日
Sparse, SPDIAGS - Here is a version using sparse matrices and SPDIAGS
Original, dense matrix:
>> N = 5 ;
>> A = randi( 10, N, N )
A =
9 1 2 2 7
10 3 10 5 1
2 6 10 10 9
10 10 5 8 10
7 10 9 10 7
Define diag ID "amplitude":
>> d = 1 ; % => -1,0,1 => band of width 3.
Build band sparse matrix:
>> Aband = spdiags( spdiags(A, -d:d), -d:d, N, N )
Aband =
(1,1) 9
(2,1) 10
(1,2) 1
(2,2) 3
(3,2) 6
(2,3) 10
(3,3) 10
(4,3) 5
(3,4) 10
(4,4) 8
(5,4) 10
(4,5) 10
If you needed to have it full despite the large amount of 0s (for large values of N):
>> Aband = full( Aband )
Aband =
9 1 0 0 0
10 3 10 0 0
0 6 10 10 0
0 0 5 8 10
0 0 0 10 7
Note that there is a processing time overhead when you deal with sparse matrices, which is compensated by the gain in efficiency (when N is large) due to the fact that only non-zero elements are stored/processed. For small values of N though, I would consider Star Strider's solution based on a loop with full matrices, or the solution below.
Dense, TRIL - Here is another "dense" solution based on TRIL and logical indexing (I am using the same A as above, and I display intermediary steps so you can see the logic):
>> id = logical( tril( ones(N), d ))
id =
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 1
>> id = id & id.'
id =
1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1
>> A(~id) = 0
A =
9 1 0 0 0
10 3 10 0 0
0 6 10 10 0
0 0 5 8 10
0 0 0 10 7
If you really need to optimize your code, I'd advise you to implement the 4 or 5 solutions presented in this thread, and time them specifically for your case.
  3 件のコメント
Cedric
Cedric 2014 年 6 月 7 日
Note that most built-ins in MATLAB support sparse matrices, so if N is large and d is small in comparison, it is in your interest not to transform back to full unless really needed.
S. David
S. David 2014 年 6 月 7 日
編集済み: S. David 2014 年 6 月 7 日
I needed it full, because I need to left-multiply an N-by-1 vector by it for signal processing.

サインインしてコメントする。


Sean de Wolski
Sean de Wolski 2014 年 6 月 6 日
Or triu and tril
x = magic(10);
n = 3;
x = x(tril(ones(size(x)),n)&triu(ones(size(x)),-n))
  1 件のコメント
S. David
S. David 2014 年 6 月 6 日
Still I want the new matrix to be N-by-N by nulling all elements not in the selected diagonals.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeOperating on Diagonal Matrices についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by