現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
How to choose a value from the plot?
3 ビュー (過去 30 日間)
古いコメントを表示
Priya
2014 年 5 月 23 日
plot(contact_geometry.y-d,contact_geometry.r_L)
Could someone please tell me, is it possible to do coding in such a way that one random value of Y is chosen for each iteration automatically.
For eg, when I run the program for the first time, R should be 0.4494, next time 0.4657. And this should rely on the above plot command. Please help.
採用された回答
Star Strider
2014 年 5 月 23 日
Not certain what you want, so here are two possibilities:
For any y on the domain (-0.03, 0.01):
f = @(x) 1./(1-75*x); % Substitute your function
x = 0.04*rand-0.03; % Define domain
y = f(x); % Calculate ‘y’
For your particular three values:
v = [0.4494 0.4542 0.4657];
y = v(randi(3)); % Randomly choose one
27 件のコメント
Priya
2014 年 5 月 23 日
Thank you. I get this error.
Attempted to access f(-0.0131295); index must be a positive integer or logical.
Star Strider
2014 年 5 月 23 日
When I use my function and:
f(-0.0131295)
I get:
ans =
503.8513e-003
If your function is not also named f, you will get that error. You have to substitute your function for mine, and if you call it something other than f, you have to change the y line to call your function correctly.
My code is simply an example, since you did not post your function. You have to adapt my code to fit your situation.
Priya
2014 年 5 月 24 日
編集済み: Priya
2014 年 5 月 24 日
Yes. I'm getting it now. Thank you. But I have a doubt, I get a value of y which is not in the range shown in the plot above (which is 0.445 to 0.475).
Logically if I calculate y, I should be getting a value which falls within this limit right? But I'm getting y values like 0.8580, 0.5227 etc. could you please tell me why is that so?
Star Strider
2014 年 5 月 24 日
I will have to see your function. I made up a function that loosely approximates yours simply to demonstrate the code. I have no idea what your data are or what the function is that generated them.
Post your function, explain the variables and parameters, and tell me what you are doing. What does the function represent? Do you need to check for bounds on x or y?
Star Strider
2014 年 5 月 24 日
編集済み: Star Strider
2014 年 5 月 24 日
This polynomial approximation gives a good fit to your data:
load('wheel_rail_AW.mat')
S = contact_geometry
d = 0.01;
x = linspace(min(S.y-d), max(S.y-d),size(S.y-d,2));
[p,ps,smu] = polyfit(S.y-d, S.r_L, 8); % Fit polynomial
v = polyval(p, x, ps, smu); % Calculate values of fit for a given s
figure(1)
plot(S.y-d, S.r_L, '.-')
hold on
plot(x, v, '-r', 'LineWidth', 1.5)
hold off
grid
I kept the plot block in so you can see the effectiveness of the fit.
I saved the [p,ps,smu] information in ‘contact_geom_poly.mat’ that I’ve attached here. All you need to do is load it, then provide an x value for this line:
y = polyval(p, x, ps, smu);
and get the y value. If you give it any value of x in the interval (-0.03,0.01), it should give you reasonably accurate values for y.
There are other approaches for this of course, one being interpolation, but that is significantly more complicated.
EDIT —
This is the easiest way to use the polynomial I fit to your data:
load('contact_geom_poly.mat')
f = @(x) polyval(p, x, ps, smu);
y1 = f(-0.018) % Scalar argument
y2 = f([-0.0021 0.0067]) % Vector argument
yields:
y1 =
449.4902e-003
y2 =
454.3047e-003 465.7238e-003
These compare almost exactly to the data on the plot in your Question.
Priya
2014 年 5 月 24 日
Thanks very much for your code. I'll try, work on this a bit and will let you know.
Priya
2014 年 5 月 25 日
編集済み: Priya
2014 年 5 月 25 日
It's all working now, but I expect 'y' to generate a random value for each 'x' instead of these three points alone shown in the plot above. I have just shown it for an example.
So each time I run the program, y should automatically show a different value within the mentioned x and y-axis limits.
Thanks
Star Strider
2014 年 5 月 25 日
I seem not to be making myself clear.
The full code I intend you to implement is:
load('contact_geom_poly.mat')
f = @(x) polyval(p, x, ps, smu);
x = 0.04*rand-0.03; % Define domain
y = f(x);
That’s simply part of the example code I gave you before, and the specific polynomial fit to your data that I derived.
This code should do exactly what you want!
Star Strider
2014 年 5 月 25 日
My pleasure!
I actually demonstrated that in my comment headed: ‘Star Strider on 24 May 2014 at 13:02’ about 7-8 comments above this one.
Here is some revised code to make it as easy as possible for you to calculate your regression coefficients and structures for various dependent variables. The routine does its best to fit your data, then creates ‘.mat’ files for the polynomial fit output so you can easily use them in your application:
datamatfile = 'wheel_rail_AW.mat';
dirmats = which(datamatfile); % Find directory for input data file
dirsep = strfind(dirmats, '\'); % Get path to ‘datamatfile’
pathname = dirmats(1:max(dirsep)); % Create path (‘fileparts’ returns an empty string for some reason)
load(datamatfile) % Load data
S = contact_geometry; % Create data structure
d = 0.01; % Define ‘d’
SNames = fieldnames(S) % Variable names in ‘datamatfile’
% ———————— Prompt for dependent variable for polynomial regression ————————
vblnr = listdlg('PromptString', {'Select a dependent variable' 'for polynomial regression:'}, 'ListString', SNames, 'SelectionMode','single')
vbl = char(SNames(vblnr)); % Variable to be regressed
x = linspace(min(S.y-d), max(S.y-d),size(S.y-d,2));
[p,ps,smu] = polyfit(S.y-d, eval(['S.' vbl]), 51); % Fit polynomial
v = polyval(p, x, ps, smu); % Calculate values of fit for a given s
figure(1)
plot(S.y-d, eval(['S.' vbl]), '.-')
hold on
plot(x, v, '-r', 'LineWidth', 1.5)
hold off
xlabel('y-d')
ylabel('Amplitude')
title(sprintf('Plot of ‘%s’ as a function of [y-d]', vbl))
grid
% ———————————————— Save regression information and notify ————————————————
save([pathname 'contact_geom_poly_' vbl '.mat'], 'p', 'ps', 'smu')
h1 = msgbox({'Polynomial regression structures saved as' ['contact_geom_poly_' vbl '.mat']});
Your data have some significant discontinuities, so to be as robust as possible with this, I am using an excessively high-degree polynomial. It fits most of your data reasonably well, but ‘rings’ at the discontinuities. There is no way to avoid that, because ‘ringing’ will occur at the ends if it fits the discontinuities without ringing. This way, it ‘rings’ a bit at the discontinuities and at the ends, but minimally at both. This is about the best you can expect from it.
The routine searches for the directory ‘wheel_rail_AW.mat’ is in and stores the ‘.mat’ files it creates in the same directory.
-------------------------------------------------------------------------------------------------------------------------------------
NOTE — I will hear quite justifiable screams in my direction at my using a 51-degree polynomial. The purpose here is to provide a reasonable approximation of data with some saturation discontinuities over a narrow domain to make the interpolation as easy as possible in the intended application. Reading the entire thread provides the necessary context.
Priya
2014 年 5 月 25 日
Sorry, I can see that you have clearly mentioned everything I need to do. But since I haven't done this before, I have no idea how to assign values for the regression coefficients.
Also, is the whole chunk of code above demonstrates how to create a .mat file for storing the regression coefficients? Please do this favour.
Star Strider
2014 年 5 月 25 日
Not a problem. I just wanted to be sure you know that I’m not leaving you stranded.
You don’t need to assign the values for the regression coefficients. The polyfit function does that for you. All you have to do is choose the variable you want polyfit to provide the polynomial fit for. The code I posted in my previous comment will do everything for you.
Run the entire code in my previous comment. (You may want to make a separate script file for it.) You will see that it offers you a menu of variables to regress against (y-d), does the regression, plots it, stores the estimated parameters and structures in a ‘.mat’ file that incorporates the name of the variable at the end of the ‘.mat’ file name, and tells you what it did.
All you have to do then is run these lines in your code:
load('contact_geom_poly_r_L.mat')
f = @(x) polyval(p, x, ps, smu);
x = 0.04*rand-0.03; % Define domain
y = f(x);
to use the fit for ‘r_L’. Substitute the ‘.mat’ file name of your choice in the load statement for the other variables.
It will do its best to produce the y values you want for the ‘.mat’ file you choose.
Priya
2014 年 6 月 5 日
Hi,
I would like to know if there's any function other than polyfit to perform the above.
Star Strider
2014 年 6 月 5 日
編集済み: Star Strider
2014 年 6 月 5 日
You may want to experiment with the spline function. Experiment with the interp1 as well (with spline or piecewise interpolation options), and there could be some File Exchange functions, but I’m not aware of any others.
The problem with some of your data are the saturation discontinuities. You could test for them, use polyfit on the smooth portions of your data, then have your function return a constant for x values above the saturation discontinuity. I used polyfit because it was the logical first choice for what you were originally doing, and gave decent fits, even at the discontinuities.
Star Strider
2014 年 6 月 5 日
Nothing actually wrong. It’s just that in that region, sin(x) = x. Change the line computing the sine to:
y=sin(100*x);
and you’ll see that it works as intended.
Change the plot command to:
plot(x,y,'.',xi,yi, 'or')
so that the one interpolated point is more visible.
Star Strider
2014 年 6 月 6 日
It would seem to me that:
Y = f_fun(X);
is essentially equivalent to (and can be replaced by):
yi=interp1(x,y,xi);
You don’t need the polynomial fit if you’re using interp1.
Star Strider
2014 年 6 月 6 日
To force the plot to only display y-axis limits only between 0.445 and 0.475, add this to your plot statements:
axis([xlim 0.445 0.475])
Star Strider
2014 年 6 月 6 日
It works. There are simply not many data in that region:
load('wheel_rail_AW.mat')
S = contact_geometry
x = linspace(min(S.y), max(S.y),size(S.y,2));
y=sin(100*x);
xi = 0.04*rand-0.03;
yi=interp1(x,y,xi);
figure(1)
plot(x,y,'.',xi,yi,'or')
axis([xlim 0.445 0.475])
Star Strider
2014 年 6 月 6 日
It seems you can.
The ‘NaN’ is most likely caused by a value for xi that is outside of the x data range. A solution for that is to change your interp1 call to:
yi = interp1(x_new, y_new, xi, 'linear', 'extrap');
That won’t change its behaviour (the default method is 'linear'), except to allow linear extrapolation.
Star Strider
2014 年 6 月 6 日
That is to be expected. You are extrapolating.
If you want to choose random numbers only on your ‘x_new’ range:
xi = min(x_new) + (max(x_new)-min(x_new)) * rand;
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Linear and Nonlinear Regression についてさらに検索
タグ
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)