Different Values if K-means Clustring on same data.
1 回表示 (過去 30 日間)
古いコメントを表示
I have been using matlab function of K-means clustring for making clusters of data. I happen to apply it on same data. But got wildly different results every time. I know the reason for this. But I need sugestions for overcoming this issue. Should I use some modified version of K-means or Should look for some other clustering technique?
K-means command which i used is "kmeans(Feature_Matrix,20,'Replicates',5,'emptyaction','singleton');
0 件のコメント
採用された回答
Shashank Prasanna
2014 年 4 月 8 日
編集済み: Shashank Prasanna
2014 年 4 月 8 日
Kmeans can get stuck in local minima. By which I mean it is sensitive to initial centroid positions. You can specify a higher number of replicates to increase you chances of getting a global solution.
If you are interested in exploring other clustering algorithms, find all the supported ones here:
2 件のコメント
Walter Roberson
2014 年 4 月 8 日
kmeans uses random initialization of cluster positions, unless you pass it specific positions to start at.
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!