Different Values if K-means Clustring on same data.
1 回表示 (過去 30 日間)
古いコメントを表示
I have been using matlab function of K-means clustring for making clusters of data. I happen to apply it on same data. But got wildly different results every time. I know the reason for this. But I need sugestions for overcoming this issue. Should I use some modified version of K-means or Should look for some other clustering technique?
K-means command which i used is "kmeans(Feature_Matrix,20,'Replicates',5,'emptyaction','singleton');
0 件のコメント
採用された回答
Shashank Prasanna
2014 年 4 月 8 日
編集済み: Shashank Prasanna
2014 年 4 月 8 日
Kmeans can get stuck in local minima. By which I mean it is sensitive to initial centroid positions. You can specify a higher number of replicates to increase you chances of getting a global solution.
If you are interested in exploring other clustering algorithms, find all the supported ones here:
2 件のコメント
Walter Roberson
2014 年 4 月 8 日
kmeans uses random initialization of cluster positions, unless you pass it specific positions to start at.
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Statistics and Machine Learning Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!