please can anyone help me, can i use this code of C4.5 with database call heart statlog if yes tell me how ?! like you see i used load heart.m!!

2 ビュー (過去 30 日間)
if true
% load heart.m;
[n m]=size (heart );
function test_targets = C4_5(train_patterns, train_targets, test_patterns, inc_node)
% Classify using Quinlan's C4.5 algorithm
% Inputs:
% training_patterns - Train patterns
% training_targets - Train targets
% test_patterns - Test patterns
% inc_node - Percentage of incorrectly assigned samples at a node
%
% Outputs
% test_targets - Predicted targets
%NOTE: In this implementation it is assumed that a pattern vector with fewer than 10 unique values (the parameter Nu)
%is discrete, and will be treated as such. Other vectors will be treated as continuous
[Ni, M] = size(train_patterns);
inc_node = inc_node*M/100;
Nu = 10;
%Find which of the input patterns are discrete, and discretisize the corresponding
%dimension on the test patterns
discrete_dim = zeros(1,Ni);
for i = 1:Ni,
Ub = unique(train_patterns(i,:));
Nb = length(Ub);
if (Nb <= Nu),
%This is a discrete pattern
discrete_dim(i) = Nb;
dist = abs(ones(Nb ,1)*test_patterns(i,:) - Ub'*ones(1, size(test_patterns,2)));
[m, in] = min(dist);
test_patterns(i,:) = Ub(in);
end
end
%Build the tree recursively
disp('Building tree')
tree = make_tree(train_patterns, train_targets, inc_node, discrete_dim, max(discrete_dim), 0);
%Classify test samples
disp('Classify test samples using the tree')
test_targets = use_tree(test_patterns, 1:size(test_patterns,2), tree, discrete_dim, unique(train_targets));
%END
function targets = use_tree(patterns, indices, tree, discrete_dim, Uc)
%Classify recursively using a tree
targets = zeros(1, size(patterns,2));
if (tree.dim == 0)
%Reached the end of the tree
targets(indices) = tree.child;
return
end
%This is not the last level of the tree, so:
%First, find the dimension we are to work on
dim = tree.dim;
dims= 1:size(patterns,1);
%And classify according to it
if (discrete_dim(dim) == 0),
%Continuous pattern
in = indices(find(patterns(dim, indices) <= tree.split_loc));
targets = targets + use_tree(patterns(dims, :), in, tree.child(1), discrete_dim(dims), Uc);
in = indices(find(patterns(dim, indices) > tree.split_loc));
targets = targets + use_tree(patterns(dims, :), in, tree.child(2), discrete_dim(dims), Uc);
else
%Discrete pattern
Uf = unique(patterns(dim,:));
for i = 1:length(Uf),
if any(Uf(i) == tree.Nf) %Has this sort of data appeared before? If not, do nothing
in = indices(find(patterns(dim, indices) == Uf(i)));
targets = targets + use_tree(patterns(dims, :), in, tree.child(find(Uf(i)==tree.Nf)), discrete_dim(dims), Uc);
end
end
end
%END use_tree
function tree = make_tree(patterns, targets, inc_node, discrete_dim, maxNbin, base)
%Build a tree recursively
[Ni, L] = size(patterns);
Uc = unique(targets);
tree.dim = 0;
%tree.child(1:maxNbin) = zeros(1,maxNbin);
tree.split_loc = inf;
if isempty(patterns),
return
end
%When to stop: If the dimension is one or the number of examples is small
if ((inc_node > L) | (L == 1) | (length(Uc) == 1)),
H = hist(targets, length(Uc));
[m, largest] = max(H);
tree.Nf = [];
tree.split_loc = [];
tree.child = Uc(largest);
return
end
%Compute the node's I
for i = 1:length(Uc),
Pnode(i) = length(find(targets == Uc(i))) / L;
end
Inode = -sum(Pnode.*log(Pnode)/log(2));
%For each dimension, compute the gain ratio impurity
%This is done separately for discrete and continuous patterns
delta_Ib = zeros(1, Ni);
split_loc = ones(1, Ni)*inf;
for i = 1:Ni,
data = patterns(i,:);
Ud = unique(data);
Nbins = length(Ud);
if (discrete_dim(i)),
%This is a discrete pattern
P = zeros(length(Uc), Nbins);
for j = 1:length(Uc),
for k = 1:Nbins,
indices = find((targets == Uc(j)) & (patterns(i,:) == Ud(k)));
P(j,k) = length(indices);
end
end
Pk = sum(P);
P = P/L;
Pk = Pk/sum(Pk);
info = sum(-P.*log(eps+P)/log(2));
delta_Ib(i) = (Inode-sum(Pk.*info))/-sum(Pk.*log(eps+Pk)/log(2));
else
%This is a continuous pattern
P = zeros(length(Uc), 2);
%Sort the patterns
[sorted_data, indices] = sort(data);
sorted_targets = targets(indices);
%Calculate the information for each possible split
I = zeros(1, L-1);
for j = 1:L-1,
%for k =1:length(Uc),
% P(k,1) = sum(sorted_targets(1:j) == Uc(k));
% P(k,2) = sum(sorted_targets(j+1:end) == Uc(k));
%end
P(:, 1) = hist(sorted_targets(1:j) , Uc);
P(:, 2) = hist(sorted_targets(j+1:end) , Uc);
Ps = sum(P)/L;
P = P/L;
Pk = sum(P);
P1 = repmat(Pk, length(Uc), 1);
P1 = P1 + eps*(P1==0);
info = sum(-P.*log(eps+P./P1)/log(2));
I(j) = Inode - sum(info.*Ps);
end
[delta_Ib(i), s] = max(I);
split_loc(i) = sorted_data(s);
end
end
%Find the dimension minimizing delta_Ib
[m, dim] = max(delta_Ib);
dims = 1:Ni;
tree.dim = dim;
%Split along the 'dim' dimension
Nf = unique(patterns(dim,:));
Nbins = length(Nf);
tree.Nf = Nf;
tree.split_loc = split_loc(dim);
%If only one value remains for this pattern, one cannot split it.
if (Nbins == 1)
H = hist(targets, length(Uc));
[m, largest] = max(H);
tree.Nf = [];
tree.split_loc = [];
tree.child = Uc(largest);
return
end
if (discrete_dim(dim)),
%Discrete pattern
for i = 1:Nbins,
indices = find(patterns(dim, :) == Nf(i));
tree.child(i) = make_tree(patterns(dims, indices), targets(indices), inc_node, discrete_dim(dims), maxNbin, base);
end
else
%Continuous pattern
indices1 = find(patterns(dim,:) <= split_loc(dim));
indices2 = find(patterns(dim,:) > split_loc(dim));
if ~(isempty(indices1) | isempty(indices2))
tree.child(1) = make_tree(patterns(dims, indices1), targets(indices1), inc_node, discrete_dim(dims), maxNbin, base+1);
tree.child(2) = make_tree(patterns(dims, indices2), targets(indices2), inc_node, discrete_dim(dims), maxNbin, base+1);
else
H = hist(targets, length(Uc));
[m, largest] = max(H);
tree.child = Uc(largest);
tree.dim = 0;
end
end
end

回答 (0 件)

カテゴリ

Help Center および File ExchangeStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by