svd, pca - linear transformation

1 回表示 (過去 30 日間)
sas0701
sas0701 2014 年 3 月 13 日
編集済み: Walter Roberson 2014 年 3 月 16 日
Hi, I used to do the following..
[U,SS,V] = svd(Y*Y');
W = sqrt(SS);
w = diag(W);
L = diag(1./w)*U';
T = L*Y;
Here the first row of L gave me the linear transformation between my observations and the first PC.
FOr a variety of reasons I am now using
[coeffZ, score, latent, tsquared, explained, mu]=pca(Z);
Can someone please explain how I can obtain L from this?
Thanks,
S
  1 件のコメント
sas0701
sas0701 2014 年 3 月 16 日
anyone?

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeDimensionality Reduction and Feature Extraction についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by