Cavity problem by Lattice-Boltzmann method
11 ビュー (過去 30 日間)
古いコメントを表示
Hi every body, I have written a MATLAB code for Lid-Driven cavity problem by Lattice-Boltzmann method. Although it seems that my code is OK, I could not get the correct figure. I spent one month or more and I got crazy! By the way, for seeing the streamlines, is it correct to use "contour" command (the last line in my code)?! I would greatly appriciate any help. my code is as follows:
if true
%%%%%%%%%%%%%%%
% Script file: LidDrivenCavity.m
%
% Lattice structure:
% c4 c3 c2
% \ | /
% c5 -c9 - c1
% / | \
% c6 c7 c8
%
tic; hold on; clc; clear; nx=100; ny=100; tstep=40000; alpha=0.01; omega=1.0; u_ini=0.1; v_ini=0; Re=u_ini*nx/alpha w1=4/9; w2=1/9; w3=1/36; f=ones(nx,ny,9); f_eq=f; density=2.7;
for ii=1:tstep
% Propegate (This part of code [propegate] is always constant for all LBM
% problems.)
f(:,:,4)=f([2:nx 1],[ny 1:ny-1],4); f(:,:,3)=f(:,[ny 1:ny-1],3);
f(:,:,2)=f([nx 1:nx-1],[ny 1:ny-1],2); f(:,:,5)=f([2:nx 1],:,5);
f(:,:,1)=f([nx 1:nx-1],:,1); f(:,:,6)=f([2:nx 1],[2:ny 1],6);
f(:,:,7)=f(:,[2:ny 1],7); f(:,:,8)=f([nx 1:nx-1],[2:ny 1],8);
% Boundary Conditions
%At i=1, Bounceback
f(1,:,1)=f(1,:,5); f(1,:,2)=f(1,:,6); f(1,:,8)=f(1,:,4);
%At i=nx, Bounceback
f(nx,:,4)=f(nx,:,8); f(nx,:,5)=f(nx,:,1); f(nx,:,6)=f(nx,:,2);
%At j=1, Bounceback
f(:,1,2)=f(:,1,6); f(:,1,3)=f(:,1,7); f(:,1,4)=f(:,1,8);
%At j=ny, Know Velocity
densityN=f(:,ny,9)+f(:,ny,1)+f(:,ny,5)+2*(f(:,ny,3)+f(:,ny,4)+f(:,ny,2));
f(:,ny,7)=f(:,ny,3);
f(:,ny,6)=f(:,ny,2)+0.5*(f(:,ny,1)-f(:,ny,5))-u_ini.*densityN/2;
f(:,ny,8)=f(:,ny,4)+0.5*(f(:,ny,5)-f(:,ny,1))+u_ini.*densityN/2;
density=sum(f,3);
u=(sum(f(:,:,[1 2 8]),3)-sum(f(:,:,[4 5 6]),3))./density;
v=(sum(f(:,:,[2 3 4]),3)-sum(f(:,:,[6 7 8]),3))./density;
f_eq(:,:,1)=w2*density.*(1+3*u+9/2*u.^2-3/2*(u.^2+v.^2));
f_eq(:,:,3)=w2*density.*(1+3*v+9/2*v.^2-3/2*(u.^2+v.^2));
f_eq(:,:,5)=w2*density.*(1-3*u+9/2*u.^2-3/2*(u.^2+v.^2));
f_eq(:,:,7)=w2*density.*(1-3*v+9/2*v.^2-3/2*(u.^2+v.^2));
f_eq(:,:,2)=w3*density.*(1+3*(u+v)+9/2*(u+v).^2-3/2*(u.^2+v.^2));
f_eq(:,:,4)=w3*density.*(1+3*(-u+v)+9/2*(-u+v).^2-3/2*(u.^2+v.^2));
f_eq(:,:,6)=w3*density.*(1-3*(u+v)+9/2*(u+v).^2-3/2*(u.^2+v.^2));
f_eq(:,:,8)=w3*density.*(1+3*(u-v)+9/2*(u-v).^2-3/2*(u.^2+v.^2));
f_eq(:,:,9)=w1*density.*(1-3/2*(u.^2+v.^2));
f=omega*f_eq+(1-omega)*f;
end
contour(u',100); toc; end
0 件のコメント
回答 (2 件)
Aravind Baskar
2016 年 4 月 16 日
Although the streamlines are fine, error is not reducing after each time step, it is fluctuating.
1 件のコメント
sthavishtha
2017 年 1 月 26 日
the fluctuation of errors, called as numerical instability is the main problem of SRT model of Lattice Boltzmann Method (method used here). In such cases, its recommended to adopt Multiple Relaxation Time (MRT) or Two-Relaxation time (TRT) models of Lattice Boltzmann Method.
sthavishtha
2017 年 1 月 26 日
the method which you have suggested for plotting streamlines actually plots the u-velocity contours.For observing the streamlines, you can use streamslice, though its mostly preferred for 3D.
[x,y]=meshgrid(1:nx,1:ny); streamslice((x-1)/nx,(y-1)/ny,u',v');
Though the quality of the plotted streamlines is not great, you can also export the velocity data to a specific data file for visualization in widely used softwares - Tecplot, Visit and Paraview. Alternatively, if you want to use Matlab only, you may calculate the streamfunction directly from flowfun(u,v) - from the link attached. In that case, you may directly plot the contour of streamfunction.
Hope that helps.
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!