Finding a root with interval constraint

7 ビュー (過去 30 日間)
Chien-Chia Huang
Chien-Chia Huang 2014 年 1 月 24 日
コメント済み: Walter Roberson 2014 年 1 月 25 日
Hello there!
I am trying to find a point x within the time interval [t-1,t] (for some t, say t = 3) so that the function attains value zero. That is, I want to solve "Q_0 + integral(a+b*sin(c*t+d)-mu,t-1,x) = 0" for x in [t-1,t]. My code is the following
y = fsolve(@(x) Q_0+(a-mu)*(x-t+1)-(b/c)*cos(c*x+d)+(b/c)*cos(c*(t-1)+d),0,optimset('Display','off'))
wherein (a,b,c,d) satisfy a + b*sin(c*t+d), and Q_0 and mu are constants. This code has no problem. However, the solution may sometimes be outside the time interval [t-1,t], which is not what I want.
So, my question is if there is a way to restrict the routine to find a solution that lies within [t-1,t] exactly?
Thanks!

採用された回答

Walter Roberson
Walter Roberson 2014 年 1 月 24 日
As your x0 is a scalar (0), your x are scalar, and that implies you can use fzero() instead of fsolve(). With fzero() you can pass the interval [t-1 t] as your x0.
  5 件のコメント
Chien-Chia Huang
Chien-Chia Huang 2014 年 1 月 25 日
編集済み: Chien-Chia Huang 2014 年 1 月 25 日
Thanks, Walter. My code now goes like this (value of mu changes)
[FirstVanish,~,exitflag] = fzero(@(x) queuelength(counter_qln)+(a(j)-mu)*(x-t+1)-(b(j)/c(j))*cos(c(j)*x+d(j))+(b(j)/c(j))*cos(c(j)*(t-1)+d(j)),[t-1,t])
However, it showed the error msg
Error using fzero (line 274) The function values at the interval endpoints must differ in sign.
This is why I will need to know how to get things going without seeing the above.
Walter Roberson
Walter Roberson 2014 年 1 月 25 日
Ah, then use try/catch

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOptimization についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by