solving transcendental equation numerically
24 ビュー (過去 30 日間)
古いコメントを表示
I am trying to solve the 2 transcendental equations for 2 variables A,M for the given L
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A^3 - L*A^2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L*A^2/2*(sqrt(M^2-1) + (M^2-2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2-1)*acos(1/M)-M+1)-1;
can any one help me how to solve it numerically
0 件のコメント
回答 (2 件)
Mischa Kim
2014 年 1 月 16 日
編集済み: Mischa Kim
2014 年 1 月 16 日
Hello vijay, what are the equations equal to? Zero? In other words,
0 = A^3 - L*A^2.*(sqrt(M.^2 - 1) + M.^2.*acos(1./M)) - PBAR;
0 = L*A^2/2*(sqrt(M^2 - 1) + (M^2 - 2)*acos(1/M)) + 4*L^2*A/3*(sqrt(M^2 - 1)*acos(1/M) - M+1)-1;
If so, this is a root-finding problem: find A and M such that the two equations are satisfied. There is plenty of literature on solving systems of non-linear equations.
Try Newton-Raphson. The challenge you might run into is to find good starting values for the search, such that the algorithm coverges properly. Also be aware that there could be multiple soulutions to your problem.
0 件のコメント
Azzi Abdelmalek
2014 年 1 月 16 日
M=sym('M',[1,5])
A=sym('A',[1 5])
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
equation1 = A.^3 - L.*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L.*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L.^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
solve([equation1;equation2])
4 件のコメント
Azzi Abdelmalek
2014 年 1 月 16 日
syms A M
PBAR = 0;
L = [0.1,0.5,1.0,1.5,2.0];
for k=1:numel(L)
equation1 = A.^3 - L(k).*A^.2.*(sqrt(M.^2-1) + M.^2.*acos(1./M)) - PBAR;
equation2 = L(k).*A.^2/2.*(sqrt(M.^2-1) + (M^.2-2).*acos(1./M)) + 4*L(k).^2.*A/3.*(sqrt(M.^2-1).*acos(1./M)-M+1)-1;
sol=solve([equation1;equation2]);
M1(k,1)=sol.M
A1(k,1)=sol.A
end
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!