Symbolic matrix diagonalization problem

17 ビュー (過去 30 日間)
Batuhan
Batuhan 2013 年 12 月 3 日
編集済み: Andrei Bobrov 2013 年 12 月 3 日
Dear All,
I faced a problem with matrix diagonalization. I want to find the matrix that diagonalizes, say, matrix A. It is known that V^-1*A*V=D solves this problem, where V is the matrix of eigenvectors and D is the matrix of eigenvalues. I checked this method with arbitrary matrices and saw that it works, as it should be.
However, when I try to diagonalize a 3x3 symbolic matrix, V^-1*A*V does not give me D matrix. What could have gone wrong? Any help would be appreciated.
Cheers.
syms k1 k2 k3 m1 m2 m3;
A=[(k1+k3)/m1,-k1/m1,-k3/m1;-k1/m2,(k1+k2)/m2,-k2/m2;-k3/m3,-k2/m3,(k2+k3/m3];
[V,D]=eig(A);
d1=V^-1*A*V;
ans=d1-D;

採用された回答

Andrei Bobrov
Andrei Bobrov 2013 年 12 月 3 日
編集済み: Andrei Bobrov 2013 年 12 月 3 日
Err = simplify(d1-D);
all(Err(:) == 0)

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by