Matlab-condition number of a matrix

2 ビュー (過去 30 日間)
evi
evi 2013 年 11 月 23 日
コメント済み: evi 2013 年 11 月 24 日
Using matlab,I found that the condition number of matrix A(using the infinity norm,Koo(A)) (where A is is the Hilbert matrix with dimension n=200 ) is 3.8586e+020
Is this right or am I wrong?

採用された回答

John D'Errico
John D'Errico 2013 年 11 月 23 日
No. It is probably a bigger number than that However, you forget the limits of floating point arithmetic.
  7 件のコメント
evi
evi 2013 年 11 月 24 日
Nice...Thank you...!
John D'Errico
John D'Errico 2013 年 11 月 24 日
As a followup, I decided to add a few linear algebra tools to HPF. So far this am, chol, LU, det were easy and now done. svd will take longer.

サインインしてコメントする。

その他の回答 (1 件)

evi
evi 2013 年 11 月 24 日
I have also an other question.If we have the tridiagonal matrix,that has the number 4 at the main diagonal and the number 1 at the first diagonal below the main diagonal and at the first diagonal above the main diagonal,I get that the condition number,using the infinity norm,is 3,independent from the dimension I give..Is this right???If yes,why does this happen??Why isn't there any change of the condition number??
  2 件のコメント
John D'Errico
John D'Errico 2013 年 11 月 24 日
編集済み: John D'Errico 2013 年 11 月 24 日
If you want to ask a separate question, then ask it as another question, not as an answer to your first question. When you ask it like this, you cause confusion, and make it difficult for others to follow.
evi
evi 2013 年 11 月 24 日
Ok,sorry!!

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by