How can I determine the angle between two vectors in MATLAB?

1,087 ビュー (過去 30 日間)
MathWorks Support Team
MathWorks Support Team 2011 年 6 月 22 日
コメント済み: Bruno Luong 2024 年 10 月 1 日
How can I determine the angle between two vectors in MATLAB?
I have two vectors. Is there a MATLAB function that can determine the angle between them?

採用された回答

MathWorks Support Team
MathWorks Support Team 2020 年 5 月 27 日
編集済み: MathWorks Support Team 2020 年 5 月 27 日
There is no in-built MATLAB function to find the angle between two vectors. As a workaround, you can try the following:
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = real(acosd(CosTheta));
  7 件のコメント
Akihumi
Akihumi 2020 年 5 月 27 日
Hi, did you miss out a bracket for the min? I got an error and only resolve it with the following code instead.
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = real(acosd(CosTheta));
Bruno Luong
Bruno Luong 2024 年 9 月 28 日
編集済み: Bruno Luong 2024 年 9 月 28 日
This is actually incorrect for complex vectors
CosTheta = max(min(dot(u,v)/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = real(acosd(CosTheta));
The correct code is
CosTheta = max(min(real(dot(u,v))/(norm(u)*norm(v)),1),-1);
ThetaInDegrees = acos(CosTheta)

サインインしてコメントする。

その他の回答 (2 件)

James Tursa
James Tursa 2015 年 7 月 9 日
編集済み: James Tursa 2019 年 1 月 5 日
This topic has been discussed many times on the Newsgroup forum ... if I looked hard enough I'm sure I could find several Roger Stafford posts from many years ago on this. E.g., here is one of them:
The basic acos formula is known to be inaccurate for small angles. A more robust method is to use both the sin and cos of the angle via the cross and dot functions. E.g.,
atan2(norm(cross(u,v)),dot(u,v));
An extreme case to clearly show the difference:
>> a = 1e-10 % start with a very small angle
a =
1e-10
>> u = 4*[1 0 0] % arbitrary non-unit vector in X direction
u =
4 0 0
>> v = 5*[cos(a) sin(a) 0] % vector different from u by small angle
v =
5 5e-10 0
>> acos(dot(u,v)/(norm(u)*norm(v))) % acos formulation does not recover the small angle
ans =
0
>> atan2(norm(cross(u,v)),dot(u,v)) % atan2 formulation does recover the small angle
ans =
1e-10
  3 件のコメント
James Tursa
James Tursa 2020 年 2 月 3 日
To get a full circle result where "direction" of the angle is important, see this link for one possible strategy:
Bruno Luong
Bruno Luong 2022 年 12 月 3 日
@Felix Fischer If you want to find angles of multiple vector pairs put in matrix, use vecnorm rather than norm.

サインインしてコメントする。


Bruno Luong
Bruno Luong 2024 年 9 月 28 日
編集済み: Bruno Luong 2024 年 9 月 28 日
There is a good formula from Kahan, chap 12 of this Mindless paper, for given x and y two vectors of length(m) - in R^m, the angle theta between x and y can be computed as
nx = norm(x);
ny = norm(y);
xx = x*ny;
yy = y*nx;
a = xx-yy;
b = xx+yy;
theta = 2*atan(sqrt(sum(a.^2)/sum(b.^2)))
The advantage of this method is good stability and in case of
nx = norm(x) = ny = norm(y) (= 1, not required)
the code can be reduced to
a = x-y;
b = x+y;
theta = 2*atan(sqrt(sum(a.^2)/sum(b.^2)))
or more compactly
theta = 2*atan(sqrt(sum((x-y).^2)/sum((x+y).^2)))
% or
theta = 2*atan(norm(x-y)/norm(x+y))
The number of arithmetic operations is less than the atan2 formula in James Tursa's answer (only applied in R^3) which is numericall more stable than TMW answer using only dot product.
Note that this implementation does not have issue when b is all-0 vector. But in case both x and y are 0s - so as a and b, Kahan method returns NaN rather than 0 as with atan2. IMO NaN is mathemetically more coherent result.
Beside this degenerated case the result is in interval [0,pi].
NOTE: For complex vectors replace any statements of the form sum(u.^2) by sum(u.*conj(u)); with u being a, b, or x-y, x+y.
  1 件のコメント
Bruno Luong
Bruno Luong 2024 年 10 月 1 日
Same comparison and observe the robustness
a = 1e-10 % start with a very small angle
a = 1.0000e-10
u = 4*[1 0 0] % arbitrary non-unit vector in X direction
u = 1×3
4 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
v = 5*[cos(a) sin(a) 0] % vector different from u by small angle
v = 1×3
5.0000 0.0000 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
acos(dot(u,v)/(norm(u)*norm(v))) % acos formulation does not recover the small angle
ans = 0
atan2(norm(cross(u,v)),dot(u,v)) % atan2 formulation does recover the small angle
ans = 1.0000e-10
nu = norm(u);
nv = norm(v);
xx = u*nv;
yy = v*nu;
a = xx-yy;
b = xx+yy;
theta = 2*atan(sqrt(sum(a.^2)/sum(b.^2)))
theta = 1.0000e-10

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeElementary Math についてさらに検索

製品


リリース

R13SP1

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by