レイリー分布
定義
レイリー確率密度関数は、次の式で表されます。
背景
レイリー分布は、ワイブル分布の特別な場合です。A と B がワイブル分布のパラメーターである場合、パラメーター b をもつレイリー分布はパラメーター および B = 2 のワイブル分布と等価になります。
x 方向と y 方向での粒子の速度が、平均が 0 で互いに等しい分散をもつ 2 つの独立した正規分布からの確率変数の場合、それぞれの時間ごとに移動する距離はレイリー分布に従います。
通信理論では、多重経路で受信機に到達する散乱信号のモデル化に、仲上分布、ライス分布、レイリー分布が使用されます。散乱の密度に依存して、信号は異なるフェージングの特性を示します。レイリー分布と仲上分布は、散乱密度が強い場合の散乱信号のモデル化に使用されます。一方、ライス分布は、見通し距離内通信の信号が強い場合のフェージングをモデル化します。仲上分布は、レイリー分布を拡張したもので、フェージングの範囲を詳細に制御できます。
パラメーター
関数 raylfit
は、レイリー分布のパラメーターの最尤推定値を返します。この推定は、以下のとおりです。
例
レイリー分布確率密度関数の計算とプロット
パラメーター B = 0.5
のレイリー分布の確率密度関数を計算します。
x = [0:0.01:2]; p = raylpdf(x,0.5);
確率密度関数をプロットします。
figure; plot(x,p)