メインコンテンツ

2 分法アルゴリズムの高位合成コード生成

2 分法アルゴリズムを実装して固定小数点表記の数値の平方根を計算する MATLAB® 設計から高位合成 (HLS) コードを生成できます。

MATLAB 設計

まず、sqrt モデルを設定します。

mlhdlc_demo_setup('sqrt');

% Design Sqrt
design_name = 'mlhdlc_sqrt';

% Test Bench for Sqrt
testbench_name = 'mlhdlc_sqrt_tb';
Successfully copied: mlhdlc_sqrt
Successfully copied: mlhdlc_sqrt_runme
Successfully copied: mlhdlc_sqrt_tb
Successfully copied: mlhdlc_tutorial_sqrt
Successfully copied: mlhdlc_msysobj_nonrestsqrt
Successfully copied: mlhdlc_sysobj_nonrestsqrt
Successfully copied: mlhdlc_sysobj_nonrestsqrt_runme
Successfully copied: mlhdlc_sysobj_nonrestsqrt_tb
Successfully copied: mlhdlc_tutorial_sysobj_nonrestsqrt

sqrt 設計を確認します。

dbtype(design_name)
1     %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2     % MATLAB design: Pipelined Bisection Square root algorithm
3     % 
4     % Introduction:
5     % 
6     % Implement SQRT by the bisection algorithm in a pipeline, for unsigned fixed
7     % point numbers (also why you don't need to run fixed-point conversion for this design).
8     % The demo illustrates the usage of a pipelined implementation for numerical algorithms.
9     %
10    % Key Design pattern covered in this example: 
11    % (1) State of the bisection algorithm is maintained with persistent variables
12    % (2) Stages of the bisection algorithm are implemented in a pipeline 
13    % (3) Code is written in a parameterized fashion, i.e. word-length independent, to work for any size fi-type
14    % 
15    % Ref. 1. R. W. Hamming, "Numerical Methods for Scientists and Engineers," 2nd, Ed, pp 67-69. ISBN-13: 978-0486652412.
16    %      2. Bisection method, http://en.wikipedia.org/wiki/Bisection_method, (accessed 02/18/13).
17    %      
18    
19    %   Copyright 2013-2015 The MathWorks, Inc.
20    
21    %#codegen
22    function [y,z] = mlhdlc_sqrt( x )
23        persistent sqrt_pipe
24        persistent in_pipe
25       if isempty(sqrt_pipe)
26           sqrt_pipe = fi(zeros(1,x.WordLength),numerictype(x));
27           in_pipe = fi(zeros(1,x.WordLength),numerictype(x));
28       end
29       
30       % Extract the outputs from pipeline
31       y = sqrt_pipe(x.WordLength);
32       z = in_pipe(x.WordLength); 
33       
34       % for analysis purposes you can calculate the error between the fixed-point bisection routine and the floating point result.
35       %Q = [double(y).^2, double(z)];
36       %[Q, diff(Q)]
37       
38       % work the pipeline
39       for itr = x.WordLength-1:-1:1       
40           % move pipeline forward
41           in_pipe(itr+1) = in_pipe(itr);
42           % guess the bits of the square-root solution from MSB to the LSB of word length
43           sqrt_pipe(itr+1) = guess_and_update( sqrt_pipe(itr), in_pipe(itr+1), itr );
44       end
45       
46       %% Prime the pipeline
47       % with new input and the guess
48       in_pipe(1) = x;
49       sqrt_pipe(1) = guess_and_update( fi(0,numerictype(x)), x, 1 );
50       
51       %% optionally print state of the pipeline
52       %disp('************** State of Pipeline **********************')
53       %double([in_pipe; sqrt_pipe])
54       
55       return
56    end
57    
58    % Guess the bits of the square-root solution from MSB to the LSB in
59    % a binary search-fashion.
60    function update = guess_and_update( prev_guess, x, stage )    
61        % Key step of the bisection algorithm is to set the bits
62        guess = bitset( prev_guess, x.WordLength - stage + 1);
63        % compare if the set bit is a candidate solution to retain or clear it
64        if ( guess*guess <= x )        
65            update = guess;
66        else        
67            update = prev_guess;
68        end
69        return
70    end

設計のシミュレーション

コードの生成前にテスト ベンチを使用して設計をシミュレートし、実行時エラーがないか確認することをお勧めします。

mlhdlc_sqrt_tb
Iter = 01| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 02| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 03| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 04| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 05| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 06| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 07| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 08| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 09| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 10| Input = 0.000| Output = 0000000000 (0.00) | actual = 0.000000 | abserror = 0.000000
Iter = 11| Input = 4.625| Output = 0000010000 (2.00) | actual = 2.150581 | abserror = 0.150581
Iter = 12| Input = 12.500| Output = 0000011100 (3.50) | actual = 3.535534 | abserror = 0.035534
Iter = 13| Input = 16.250| Output = 0000100000 (4.00) | actual = 4.031129 | abserror = 0.031129
Iter = 14| Input = 18.125| Output = 0000100010 (4.25) | actual = 4.257347 | abserror = 0.007347
Iter = 15| Input = 20.125| Output = 0000100010 (4.25) | actual = 4.486090 | abserror = 0.236090
Iter = 16| Input = 21.875| Output = 0000100100 (4.50) | actual = 4.677072 | abserror = 0.177072
Iter = 17| Input = 35.625| Output = 0000101110 (5.75) | actual = 5.968668 | abserror = 0.218668
Iter = 18| Input = 50.250| Output = 0000111000 (7.00) | actual = 7.088723 | abserror = 0.088723
Iter = 19| Input = 54.000| Output = 0000111010 (7.25) | actual = 7.348469 | abserror = 0.098469
Iter = 20| Input = 62.125| Output = 0000111110 (7.75) | actual = 7.881941 | abserror = 0.131941
Iter = 21| Input = 70.000| Output = 0001000010 (8.25) | actual = 8.366600 | abserror = 0.116600
Iter = 22| Input = 81.000| Output = 0001001000 (9.00) | actual = 9.000000 | abserror = 0.000000
Iter = 23| Input = 83.875| Output = 0001001000 (9.00) | actual = 9.158330 | abserror = 0.158330
Iter = 24| Input = 83.875| Output = 0001001000 (9.00) | actual = 9.158330 | abserror = 0.158330
Iter = 25| Input = 86.875| Output = 0001001010 (9.25) | actual = 9.320676 | abserror = 0.070676
Iter = 26| Input = 95.125| Output = 0001001110 (9.75) | actual = 9.753205 | abserror = 0.003205
Iter = 27| Input = 97.000| Output = 0001001110 (9.75) | actual = 9.848858 | abserror = 0.098858
Iter = 28| Input = 101.375| Output = 0001010000 (10.00) | actual = 10.068515 | abserror = 0.068515
Iter = 29| Input = 102.375| Output = 0001010000 (10.00) | actual = 10.118053 | abserror = 0.118053
Iter = 30| Input = 104.250| Output = 0001010000 (10.00) | actual = 10.210289 | abserror = 0.210289

HDL Coder™ プロジェクトの作成

HDL Coder プロジェクトを作成します。

coder -hdlcoder -new mlhdlc_sqrt_prj

mlhdlc_sqrt.m ファイルを MATLAB 関数としてプロジェクトに追加します。mlhdlc_sqrt_tb.m ファイルを MATLAB テスト ベンチとして追加します。

詳細については、Get Started with MATLAB to High-Level Synthesis Workflow Using the Command Line InterfaceまたはGet Started with MATLAB to High-Level Synthesis Workflow Using HDL Coder Appを参照してください。

HLS コード生成

この設計は既に固定小数点であり、HLS コード生成に適しています。この設計に対して浮動小数点から固定小数点への変換を実行する必要はありません。

MATLAB 設計から HLS コードを生成するには、次のようにします。

1. MATLAB コマンド ラインで、関数hdlsetuphlstoolpathを使用し、HLS コード生成のパスを設定します。

2. [ワークフロー アドバイザー] ボタンをクリックして、ワークフロー アドバイザーを開始します。

3. [HDL ワークフロー アドバイザー] で、[MATLAB から HLS] として [コード生成ワークフロー] を選択します。

4. [コード生成ターゲットを選択] ステップで、[合成ツール] リストから [Cadence Stratus HLS] を選択します。

5. [HLS コード生成] タスクを右クリックし [選択したタスクまで実行] を選択して、最初から HLS コード生成までのすべてのステップを実行します。

[HLS コード生成] ログ ウィンドウにあるハイパーリンクをクリックして、生成された HLS コードを確認します。

参考