compile
Class: dlhdl.Workflow
Namespace: dlhdl
Description
compile(
compiles the
workflowObject
)dlhdl.Workflow
object and generates the parameters for deploying the
network on the target device.
compile(
compiles the workflowObject
,Name,Value
)dlhdl.Workflow
object and generates the parameters for
deploying the network on the target device, with additional options specified by one or
more Name,Value
pair arguments.
The function returns two matrices. One matrix describes the layers of the network. The
Conv Controller (Scheduling)
and the FC Controller
(Scheduling)
modules in the deep learning processor IP use this matrix to schedule
the convolution and fully connected layer operations. The second matrix contains the weights,
biases, and inputs of the neural network. This information is loaded onto the DDR memory and
used by the Generic Convolution Processor
and the Generic FC
Processor
in the deep learning processor.
Input Arguments
workflowObject
— Deep learning network deployment options
dlhdl.Workflow
object
Deep learning network deployment options, specified as a
dlhdl.Workflow
object.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
InputFrameNumberLimit
— Maximum input frame number limit
integer
Parameter to specify maximum input frame number limit to calculate DDR memory access allocation.
Example: 'InputFrameNumberLimit',30
HardwareNormalization
— Flag to enable hardware implementation of image input layer normalization function
'auto' (default) | 'on | 'off'
Flag to enable hardware implementation of image input layer normalization function, specified as a string or character vector.
Example: HardwareNormalization = "auto"
Examples
Compile the dlhdl.Workflow
object
Compile the dlhdl.Workflow
object, for deployment
to the Intel®
Arria® 10 SoC development kit that has single
data types.
Create a dlhdl.Workflow
object and then use the
compile
function to deploy the pretrained network to the target
hardware.
snet = vgg19; hT = dlhdl.Target('Intel'); hW = dlhdl.Workflow('network', snet, 'Bitstream', 'arria10soc_single','Target',hT); hW.compile
Once the code is executed the result is:
hW.compile offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "24.0 MB" "OutputResultOffset" "0x01800000" "4.0 MB" "SystemBufferOffset" "0x01c00000" "52.0 MB" "InstructionDataOffset" "0x05000000" "20.0 MB" "ConvWeightDataOffset" "0x06400000" "276.0 MB" "FCWeightDataOffset" "0x17800000" "472.0 MB" "EndOffset" "0x35000000" "Total: 848.0 MB" ans = struct with fields: Operators: [1×1 struct] LayerConfigs: [1×1 struct] NetConfigs: [1×1 struct]
Generate DDR Memory Offsets Based on Number of Input Frames
Create a
dlhdl.Workflow
object and then use thecompile
function with optional argument ofInputFrameNumberLimit
to deploy the pretrained network to the target hardware.net = resnet18; hT = dlhdl.Target('Xilinx'); hW = dlhdl.Workflow('Network', net, 'Bitstream', 'zcu102_single','Target',hT); hW.compile('InputFrameNumberLimit',30);
The result of the code execution is:
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_single. ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'bn_conv1' Batch Normalization Batch normalization with 64 channels (HW Layer) 4 'conv1_relu' ReLU ReLU (HW Layer) 5 'pool1' Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 7 'bn2a_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 8 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 9 'res2a_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 10 'bn2a_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 11 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 12 'res2a_relu' ReLU ReLU (HW Layer) 13 'res2b_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 14 'bn2b_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 15 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 16 'res2b_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 17 'bn2b_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 18 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 19 'res2b_relu' ReLU ReLU (HW Layer) 20 'res3a_branch2a' Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 21 'bn3a_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 22 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3a_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'bn3a_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 25 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 26 'res3a_relu' ReLU ReLU (HW Layer) 27 'res3a_branch1' Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 28 'bn3a_branch1' Batch Normalization Batch normalization with 128 channels (HW Layer) 29 'res3b_branch2a' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 30 'bn3b_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 31 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 32 'res3b_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'bn3b_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 34 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 35 'res3b_relu' ReLU ReLU (HW Layer) 36 'res4a_branch2a' Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 37 'bn4a_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 38 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res4a_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'bn4a_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 41 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res4a_relu' ReLU ReLU (HW Layer) 43 'res4a_branch1' Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 44 'bn4a_branch1' Batch Normalization Batch normalization with 256 channels (HW Layer) 45 'res4b_branch2a' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'bn4b_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 47 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 48 'res4b_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 49 'bn4b_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 50 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 51 'res4b_relu' ReLU ReLU (HW Layer) 52 'res5a_branch2a' Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 53 'bn5a_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 54 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 55 'res5a_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 56 'bn5a_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 57 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 58 'res5a_relu' ReLU ReLU (HW Layer) 59 'res5a_branch1' Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 60 'bn5a_branch1' Batch Normalization Batch normalization with 512 channels (HW Layer) 61 'res5b_branch2a' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 62 'bn5b_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 63 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 64 'res5b_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 65 'bn5b_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 66 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 67 'res5b_relu' ReLU ReLU (HW Layer) 68 'pool5' 2-D Global Average Pooling 2-D global average pooling (HW Layer) 69 'fc1000' Fully Connected 1000 fully connected layer (HW Layer) 70 'prob' Softmax softmax (HW Layer) 71 'ClassificationLayer_predictions' Classification Output crossentropyex with 'tench' and 999 other classes (SW Layer) ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data', an addition layer 'data_norm_add', and a multiplication layer 'data_norm' for hardware normalization. ### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software. ### Compiling layer group: conv1>>pool1 ... ### Compiling layer group: conv1>>pool1 ... complete. ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete. ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete. ### Compiling layer group: res3a_branch1 ... ### Compiling layer group: res3a_branch1 ... complete. ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete. ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete. ### Compiling layer group: res4a_branch1 ... ### Compiling layer group: res4a_branch1 ... complete. ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete. ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete. ### Compiling layer group: res5a_branch1 ... ### Compiling layer group: res5a_branch1 ... complete. ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete. ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete. ### Compiling layer group: pool5 ... ### Compiling layer group: pool5 ... complete. ### Compiling layer group: fc1000 ... ### Compiling layer group: fc1000 ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "24.0 MB" "OutputResultOffset" "0x01800000" "4.0 MB" "SchedulerDataOffset" "0x01c00000" "8.0 MB" "SystemBufferOffset" "0x02400000" "28.0 MB" "InstructionDataOffset" "0x04000000" "4.0 MB" "ConvWeightDataOffset" "0x04400000" "52.0 MB" "FCWeightDataOffset" "0x07800000" "4.0 MB" "EndOffset" "0x07c00000" "Total: 124.0 MB" ### Network compilation complete.
Compile dagnet
Network Object
Create a
dlhdl.Workflow
object withresnet18
as the network for deployment to a Xilinx® Zynq® UltraScale+™ MPSoC ZCU102 board which usessingle
data types.net = resnet18; hTarget = dlhdl.Target('Xilinx'); hW = dlhdl.Workflow('Network',snet,'Bitstream','zcu102_single','Target',hTarget);
Call the
compile
function onhW
hW.compile
Calling the
compile
function, returns:### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_single ... ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'bn_conv1' Batch Normalization Batch normalization with 64 channels (HW Layer) 4 'conv1_relu' ReLU ReLU (HW Layer) 5 'pool1' Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 7 'bn2a_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 8 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 9 'res2a_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 10 'bn2a_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 11 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 12 'res2a_relu' ReLU ReLU (HW Layer) 13 'res2b_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 14 'bn2b_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 15 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 16 'res2b_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 17 'bn2b_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 18 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 19 'res2b_relu' ReLU ReLU (HW Layer) 20 'res3a_branch2a' Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 21 'bn3a_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 22 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3a_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'bn3a_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 25 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 26 'res3a_relu' ReLU ReLU (HW Layer) 27 'res3a_branch1' Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 28 'bn3a_branch1' Batch Normalization Batch normalization with 128 channels (HW Layer) 29 'res3b_branch2a' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 30 'bn3b_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 31 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 32 'res3b_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'bn3b_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 34 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 35 'res3b_relu' ReLU ReLU (HW Layer) 36 'res4a_branch2a' Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 37 'bn4a_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 38 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res4a_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'bn4a_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 41 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res4a_relu' ReLU ReLU (HW Layer) 43 'res4a_branch1' Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 44 'bn4a_branch1' Batch Normalization Batch normalization with 256 channels (HW Layer) 45 'res4b_branch2a' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'bn4b_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 47 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 48 'res4b_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 49 'bn4b_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 50 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 51 'res4b_relu' ReLU ReLU (HW Layer) 52 'res5a_branch2a' Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 53 'bn5a_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 54 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 55 'res5a_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 56 'bn5a_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 57 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 58 'res5a_relu' ReLU ReLU (HW Layer) 59 'res5a_branch1' Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 60 'bn5a_branch1' Batch Normalization Batch normalization with 512 channels (HW Layer) 61 'res5b_branch2a' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 62 'bn5b_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 63 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 64 'res5b_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 65 'bn5b_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 66 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 67 'res5b_relu' ReLU ReLU (HW Layer) 68 'pool5' Global Average Pooling Global average pooling (HW Layer) 69 'fc1000' Fully Connected 1000 fully connected layer (HW Layer) 70 'prob' Softmax softmax (SW Layer) 71 'ClassificationLayer_predictions' Classification Output crossentropyex with 'tench' and 999 other classes (SW Layer) ### Optimizing series network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' 5 Memory Regions created. Skipping: data Compiling leg: conv1>>pool1 ... Compiling leg: conv1>>pool1 ... complete. Compiling leg: res2a_branch2a>>res2a_branch2b ... Compiling leg: res2a_branch2a>>res2a_branch2b ... complete. Compiling leg: res2b_branch2a>>res2b_branch2b ... Compiling leg: res2b_branch2a>>res2b_branch2b ... complete. Compiling leg: res3a_branch2a>>res3a_branch2b ... Compiling leg: res3a_branch2a>>res3a_branch2b ... complete. Compiling leg: res3a_branch1 ... Compiling leg: res3a_branch1 ... complete. Compiling leg: res3b_branch2a>>res3b_branch2b ... Compiling leg: res3b_branch2a>>res3b_branch2b ... complete. Compiling leg: res4a_branch2a>>res4a_branch2b ... Compiling leg: res4a_branch2a>>res4a_branch2b ... complete. Compiling leg: res4a_branch1 ... Compiling leg: res4a_branch1 ... complete. Compiling leg: res4b_branch2a>>res4b_branch2b ... Compiling leg: res4b_branch2a>>res4b_branch2b ... complete. Compiling leg: res5a_branch2a>>res5a_branch2b ... Compiling leg: res5a_branch2a>>res5a_branch2b ... complete. Compiling leg: res5a_branch1 ... Compiling leg: res5a_branch1 ... complete. Compiling leg: res5b_branch2a>>res5b_branch2b ... Compiling leg: res5b_branch2a>>res5b_branch2b ... complete. Compiling leg: pool5 ... Compiling leg: pool5 ... complete. Compiling leg: fc1000 ... Compiling leg: fc1000 ... complete. Skipping: prob Skipping: ClassificationLayer_predictions Creating Schedule... ........................... Creating Schedule...complete. Creating Status Table... .......................... Creating Status Table...complete. Emitting Schedule... .......................... Emitting Schedule...complete. Emitting Status Table... ............................ Emitting Status Table...complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "24.0 MB" "OutputResultOffset" "0x01800000" "4.0 MB" "SchedulerDataOffset" "0x01c00000" "4.0 MB" "SystemBufferOffset" "0x02000000" "28.0 MB" "InstructionDataOffset" "0x03c00000" "4.0 MB" "ConvWeightDataOffset" "0x04000000" "52.0 MB" "FCWeightDataOffset" "0x07400000" "4.0 MB" "EndOffset" "0x07800000" "Total: 120.0 MB" ### Network compilation complete. ans = struct with fields: weights: [1×1 struct] instructions: [1×1 struct] registers: [1×1 struct] syncInstructions: [1×1 struct]
Enable Hardware Implementation of Input Image Layer Normalization Function
Create a
dlhdl.Workflow
object withresnet18
as the network for deployment to a Xilinx Zynq UltraScale+ MPSoC ZCU102 board which usessingle
data types.net = resnet18; hTarget = dlhdl.Target('Xilinx',Interface = 'Ethernet'); hW = dlhdl.Workflow(Network = net,Bitstream ='zcu102_single',Target = hTarget);
Call the
compile
function onhW
. Enable hardware implementation of the input image layer normalization function by setting theHardwareNormalization
argument toauto
.hW.compile(HardwareNormalization = 'auto')
Calling the
compile
function, returns:### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_single. ### The network includes the following layers: 1 'data' Image Input 224×224×3 images with 'zscore' normalization (SW Layer) 2 'conv1' Convolution 64 7×7×3 convolutions with stride [2 2] and padding [3 3 3 3] (HW Layer) 3 'bn_conv1' Batch Normalization Batch normalization with 64 channels (HW Layer) 4 'conv1_relu' ReLU ReLU (HW Layer) 5 'pool1' Max Pooling 3×3 max pooling with stride [2 2] and padding [1 1 1 1] (HW Layer) 6 'res2a_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 7 'bn2a_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 8 'res2a_branch2a_relu' ReLU ReLU (HW Layer) 9 'res2a_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 10 'bn2a_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 11 'res2a' Addition Element-wise addition of 2 inputs (HW Layer) 12 'res2a_relu' ReLU ReLU (HW Layer) 13 'res2b_branch2a' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 14 'bn2b_branch2a' Batch Normalization Batch normalization with 64 channels (HW Layer) 15 'res2b_branch2a_relu' ReLU ReLU (HW Layer) 16 'res2b_branch2b' Convolution 64 3×3×64 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 17 'bn2b_branch2b' Batch Normalization Batch normalization with 64 channels (HW Layer) 18 'res2b' Addition Element-wise addition of 2 inputs (HW Layer) 19 'res2b_relu' ReLU ReLU (HW Layer) 20 'res3a_branch2a' Convolution 128 3×3×64 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 21 'bn3a_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 22 'res3a_branch2a_relu' ReLU ReLU (HW Layer) 23 'res3a_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 24 'bn3a_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 25 'res3a' Addition Element-wise addition of 2 inputs (HW Layer) 26 'res3a_relu' ReLU ReLU (HW Layer) 27 'res3a_branch1' Convolution 128 1×1×64 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 28 'bn3a_branch1' Batch Normalization Batch normalization with 128 channels (HW Layer) 29 'res3b_branch2a' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 30 'bn3b_branch2a' Batch Normalization Batch normalization with 128 channels (HW Layer) 31 'res3b_branch2a_relu' ReLU ReLU (HW Layer) 32 'res3b_branch2b' Convolution 128 3×3×128 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 33 'bn3b_branch2b' Batch Normalization Batch normalization with 128 channels (HW Layer) 34 'res3b' Addition Element-wise addition of 2 inputs (HW Layer) 35 'res3b_relu' ReLU ReLU (HW Layer) 36 'res4a_branch2a' Convolution 256 3×3×128 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 37 'bn4a_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 38 'res4a_branch2a_relu' ReLU ReLU (HW Layer) 39 'res4a_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 40 'bn4a_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 41 'res4a' Addition Element-wise addition of 2 inputs (HW Layer) 42 'res4a_relu' ReLU ReLU (HW Layer) 43 'res4a_branch1' Convolution 256 1×1×128 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 44 'bn4a_branch1' Batch Normalization Batch normalization with 256 channels (HW Layer) 45 'res4b_branch2a' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 46 'bn4b_branch2a' Batch Normalization Batch normalization with 256 channels (HW Layer) 47 'res4b_branch2a_relu' ReLU ReLU (HW Layer) 48 'res4b_branch2b' Convolution 256 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 49 'bn4b_branch2b' Batch Normalization Batch normalization with 256 channels (HW Layer) 50 'res4b' Addition Element-wise addition of 2 inputs (HW Layer) 51 'res4b_relu' ReLU ReLU (HW Layer) 52 'res5a_branch2a' Convolution 512 3×3×256 convolutions with stride [2 2] and padding [1 1 1 1] (HW Layer) 53 'bn5a_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 54 'res5a_branch2a_relu' ReLU ReLU (HW Layer) 55 'res5a_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 56 'bn5a_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 57 'res5a' Addition Element-wise addition of 2 inputs (HW Layer) 58 'res5a_relu' ReLU ReLU (HW Layer) 59 'res5a_branch1' Convolution 512 1×1×256 convolutions with stride [2 2] and padding [0 0 0 0] (HW Layer) 60 'bn5a_branch1' Batch Normalization Batch normalization with 512 channels (HW Layer) 61 'res5b_branch2a' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 62 'bn5b_branch2a' Batch Normalization Batch normalization with 512 channels (HW Layer) 63 'res5b_branch2a_relu' ReLU ReLU (HW Layer) 64 'res5b_branch2b' Convolution 512 3×3×512 convolutions with stride [1 1] and padding [1 1 1 1] (HW Layer) 65 'bn5b_branch2b' Batch Normalization Batch normalization with 512 channels (HW Layer) 66 'res5b' Addition Element-wise addition of 2 inputs (HW Layer) 67 'res5b_relu' ReLU ReLU (HW Layer) 68 'pool5' 2-D Global Average Pooling 2-D global average pooling (HW Layer) 69 'fc1000' Fully Connected 1000 fully connected layer (HW Layer) 70 'prob' Softmax softmax (HW Layer) 71 'ClassificationLayer_predictions' Classification Output crossentropyex with 'tench' and 999 other classes (SW Layer) ### Optimizing network: Fused 'nnet.cnn.layer.BatchNormalizationLayer' into 'nnet.cnn.layer.Convolution2DLayer' ### Notice: The layer 'data' of type 'ImageInputLayer' is split into an image input layer 'data', an addition layer 'data_norm_add', and a multiplication layer 'data_norm' for hardware normalization. ### Notice: The layer 'prob' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'ClassificationLayer_predictions' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software. ### Compiling layer group: conv1>>pool1 ... ### Compiling layer group: conv1>>pool1 ... complete. ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... ### Compiling layer group: res2a_branch2a>>res2a_branch2b ... complete. ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... ### Compiling layer group: res2b_branch2a>>res2b_branch2b ... complete. ### Compiling layer group: res3a_branch1 ... ### Compiling layer group: res3a_branch1 ... complete. ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... ### Compiling layer group: res3a_branch2a>>res3a_branch2b ... complete. ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... ### Compiling layer group: res3b_branch2a>>res3b_branch2b ... complete. ### Compiling layer group: res4a_branch1 ... ### Compiling layer group: res4a_branch1 ... complete. ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... ### Compiling layer group: res4a_branch2a>>res4a_branch2b ... complete. ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... ### Compiling layer group: res4b_branch2a>>res4b_branch2b ... complete. ### Compiling layer group: res5a_branch1 ... ### Compiling layer group: res5a_branch1 ... complete. ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... ### Compiling layer group: res5a_branch2a>>res5a_branch2b ... complete. ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... ### Compiling layer group: res5b_branch2a>>res5b_branch2b ... complete. ### Compiling layer group: pool5 ... ### Compiling layer group: pool5 ... complete. ### Compiling layer group: fc1000 ... ### Compiling layer group: fc1000 ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "24.0 MB" "OutputResultOffset" "0x01800000" "4.0 MB" "SchedulerDataOffset" "0x01c00000" "8.0 MB" "SystemBufferOffset" "0x02400000" "28.0 MB" "InstructionDataOffset" "0x04000000" "4.0 MB" "ConvWeightDataOffset" "0x04400000" "52.0 MB" "FCWeightDataOffset" "0x07800000" "4.0 MB" "EndOffset" "0x07c00000" "Total: 124.0 MB" ### Network compilation complete. ans = struct with fields: weights: [1×1 struct] instructions: [1×1 struct] registers: [1×1 struct] syncInstructions: [1×1 struct] constantData: {{1×2 cell} [0.0171 0.0175 0.0174 0 0.0171 0.0175 0.0174 0 0.0171 0.0175 0.0174 0 0.0171 0.0175 0.0174 0 … ]}
During compilation the compiler splits the image input layer into an image input layer, addition layer, and multiplication layer for hardware implementation.
Run Sequence-to-Sequence Classification on FPGAs by Using Deep Learning HDL Toolbox
This example shows how to create, compile, and deploy a long short-term memory (LSTM) network trained on accelerometer data from human movement by using the Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC. Use the deployed network to classify human activity based on sequence input data. Use MATLAB® to retrieve the prediction results from the target device.
The network attached to this example was trained using the Sequence-to-Sequence Classification Using Deep Learning. This example uses sensor data obtained from a smartphone worn on the body. This example deploys an LSTM network trained to recognize the activity of the wearer given time series data that represents accelerometer readings in three different directions. The graphs below show the raw data for these accelerometer readings over time and the resulting classifications. The training data contains time series data for seven people. Each sequence has three features and varies in length. The data set contains six training observations and one test observation.
Prerequisites
Xilinx® Zynq® Ultrascale+™ ZCU102 SoC development kit
Deep Learning HDL Toolbox™ Support Package for Xilinx FPGA and SoC
Deep Learning Toolbox™
Deep Learning HDL Toolbox™
Load the Pretrained Network
To load the pretrained human body movement network, enter:
load SequenceToSequenceClassification
View the layers of the network by using the analyzeNetwork
function. The function returns a graphical representation of the network and detailed parameter settings of the layers in the network.
analyzeNetwork(net)
Define FPGA Board Interface
Define the target FPGA board programming interface by using the dlhdl.Target
object. Specify that the interface is for a Xilinx board with an Ethernet interface.
To create the target object, enter:
hTarget = dlhdl.Target('Xilinx','Interface','Ethernet');
To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado tool path, enter:
hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat');
Prepare Network for Deployment
Prepare the network for deployment by creating a dlhdl.Workflow
object. Specify the network and bitstream name. Ensure that the bitstream name matches the data type and FPGA board. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data type.
hW = dlhdl.Workflow('network', net, 'Bitstream', 'zcu102_lstm_single','Target',hTarget);
To run the example in a Xilinx ZC706 board, enter:
hW = dlhdl.Workflow('Network', snet, 'Bitstream', 'zc706_lstm_single','Target',hTarget);
Compile Network
Run the compile
method of the dlhdl.Workflow
object to compile the network and generate the instructions, weights, and biases for deployment. The total number of frames exceeds the default value of 30. Set the InputFrameNumberLimit
name-value argument to 10000
to run predictions in chunks of 10,000 frames to prevent timeouts.
dn = compile(hW,'InputFrameNumberLimit',10000)
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_lstm_single. ### The network includes the following layers: 1 'sequenceinput' Sequence Input Sequence input with 3 dimensions (SW Layer) 2 'lstm' LSTM LSTM with 200 hidden units (HW Layer) 3 'fc' Fully Connected 5 fully connected layer (HW Layer) 4 'softmax' Softmax softmax (SW Layer) 5 'classoutput' Classification Output crossentropyex with 'Dancing' and 4 other classes (SW Layer) ### Notice: The layer 'sequenceinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software. ### Notice: The layer 'softmax' with type 'nnet.cnn.layer.SoftmaxLayer' is implemented in software. ### Notice: The layer 'classoutput' with type 'nnet.cnn.layer.ClassificationOutputLayer' is implemented in software. ### Compiling layer group: lstm.wi ... ### Compiling layer group: lstm.wi ... complete. ### Compiling layer group: lstm.wo ... ### Compiling layer group: lstm.wo ... complete. ### Compiling layer group: lstm.wg ... ### Compiling layer group: lstm.wg ... complete. ### Compiling layer group: lstm.wf ... ### Compiling layer group: lstm.wf ... complete. ### Compiling layer group: fc ... ### Compiling layer group: fc ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ __________________ "InputDataOffset" "0x00000000" "160.0 kB" "OutputResultOffset" "0x00028000" "316.0 kB" "SchedulerDataOffset" "0x00077000" "616.0 kB" "SystemBufferOffset" "0x00111000" "20.0 kB" "InstructionDataOffset" "0x00116000" "4.0 kB" "FCWeightDataOffset" "0x00117000" "648.0 kB" "EndOffset" "0x001b9000" "Total: 1764.0 kB" ### Network compilation complete.
dn = struct with fields:
weights: [1×1 struct]
instructions: [1×1 struct]
registers: [1×1 struct]
syncInstructions: [1×1 struct]
constantData: {}
ddrInfo: [1×1 struct]
resourceTable: [6×2 table]
Program Bitstream onto FPGA and Download Network Weights
To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy
method of the dlhdl.Workflow
object. This function uses the output of the compile
function to program the FPGA board and download the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages, and the required time to deploy the network.
deploy(hW)
### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA. ### Resetting network state. ### Loading weights to FC Processor. ### FC Weights loaded. Current time is 10-Dec-2023 17:21:23
Load Human Activity Test Data
Load the test data and classify the activity at each time step. Each sequence has three features and varies in length. The three features correspond to the accelerometer readings in three different directions.
Load the human activity test data. XTest
contains a single sequence of dimension 3. YTest
contains a sequence of categorical labels that correspond to the activity at each time step.
load HumanActivityTest numFeatures = 3; figure plot(XTest{1}') xlabel("Time Step") legend("Feature " + (1:numFeatures)) title("Test Data")
Run the Prediction
Classify the test data by using the classify
function.
YPred = classify(hW.Network, XTest{1});
Calculate the accuracy of the prediction.
acc = sum(YPred == YTest{1})./numel(YTest{1})
acc = 0.9995
Compare the predictions with the test data by using a plot.
figure plot(YPred,'.-') hold on plot(YTest{1}) hold off xlabel("Time Step") ylabel("Activity") title("Predicted Activities") legend(["Predicted" "Test Data"])
Compare this graph to the output of the predict
method.
Run the predict
method of the dlhdl.Workflow
object, to retrieve the hardware prediction results.
predictions = hW.predict(XTest{1}(:,1:10000),Profile='on');
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 10000. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 76879 0.00035 10000 772126470 2849.3 memSeparator_0 85 0.00000 memSeparator_3 237 0.00000 lstm.wi 17918 0.00008 lstm.wo 18017 0.00008 lstm.wg 17997 0.00008 lstm.wf 18017 0.00008 lstm.sigmoid_1 265 0.00000 lstm.sigmoid_3 267 0.00000 lstm.tanh_1 307 0.00000 lstm.sigmoid_2 267 0.00000 lstm.multiplication_2 427 0.00000 lstm.multiplication_1 427 0.00000 lstm.c_add 421 0.00000 lstm.tanh_2 301 0.00000 memSeparator_2 227 0.00000 lstm.multiplication_3 427 0.00000 fc 1061 0.00000 memSeparator_1 211 0.00000 * The clock frequency of the DL processor is: 220MHz
predictions = horzcat(predictions, hW.predict(XTest{1}(:,10001:20000)));
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 10000.
predictions = horzcat(predictions, hW.predict(XTest{1}(:,20001:30000)));
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 10000.
predictions = horzcat(predictions, hW.predict(XTest{1}(:,30001:40000)));
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 10000.
predictions = horzcat(predictions, hW.predict(XTest{1}(:,40001:50000)));
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 10000.
predictions = horzcat(predictions, hW.predict(XTest{1}(:,50001:end)));
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 3888.
save("hardwarepredictions.mat","predictions") indices = []; actions = []; for x = 1:length(YPred) [r,i] = max(predictions(:,x)); indices = [indices i]; switch i case 1 actions = [actions categorical("Dancing")]; case 2 actions = [actions categorical("Running")]; case 5 actions = [actions categorical("Walking")]; case 4 actions = [actions categorical("Standing")]; case 3 actions = [actions categorical("Sitting")]; end end
Plot the comparison between the FPGA board predictions and test data.
figure plot(actions,'.-') hold on plot(YTest{1}) hold off xlabel("Time Step") ylabel("Activity") title("Predicted Activities") legend(["Predicted" "Test Data"])
The hardware-predicted activities are similar to the activities classified by the classify
function.
Run Sequence Forecasting Using a GRU Layer on an FPGA
Reduce the time to train a sequence forecasting network by swapping out the LSTM later for a gated recurrent unit (GRU) layer. Use the deployed network to predict future values by using open-loop and closed-loop forecasting. Use MATLAB® to retrieve the prediction results from the target device.
Modified Waveform Data Network
The network attached to this example was trained using the Time Series Forecasting Using Deep Learning. In this example the LSTM layer was swapped out for a GRU layer. This example uses the WaveformData.mat
data set, which contains 2000 synthetically generated waveforms of varying lengths with three channels. This example uses a trained network with a GRU layer to forecast future values of the waveforms given the values from the previous time steps using both closed loop and open loop forecasting.
Load the Pretrained Network
To load the GRU layer network enter:
load grunet
Use the analyzeNetwork
function to obtain information about the network layers. the function returns a graphical representation of the network that contains detailed parameter information for every layer in the network.
analyzeNetwork(net)
Define FPGA Board Interface
Define the target FPGA board programming interface by using the dlhdl.Target
object. Specify that the interface is for a Xilinx board with an Ethernet interface.
To create the target object, enter:
hTarget_gru = dlhdl.Target('Xilinx',Interface='Ethernet');
To use the JTAG interface, install Xilinx™ Vivado™ Design Suite 2020.2. To set the Xilinx Vivado toolpath, enter:
hdlsetuptoolpath('ToolName', 'Xilinx Vivado', 'ToolPath', 'C:\Xilinx\Vivado\2020.2\bin\vivado.bat'); hTarget = dlhdl.Target('Xilinx',Interface='JTAG');
Prepare Network for Deployment
Prepare the network for deployment by creating a dlhdl.Workflow
object. Specify the network and the bitstream name. Ensure that the bitstream name matches the data type and the FPGA board. In this example the target FPGA board is the Xilinx ZCU102 SOC board. The bitstream uses a single data type.
hW_gru = dlhdl.Workflow(Network=net,Bitstream='zcu102_lstm_single',Target=hTarget_gru);
Tu run the example on the Xilinx ZC706 board, enter:
hW = dlhdl.Workflow(Network=net,Bitstream='zc706_lstm_single',Target=hTarget);
Compile the GRU Layer Network
Run the compile
method of the dlhdl.Workflow
object to compile the network and generate the instructions, weights, and biases for deployment. The total number of frames exceeds the default value of 30. Set the InputFrameNumberLimit
name-value argument to 1000
to run predictions in chunks of 1000 frames to prevent timeouts.
dn = compile(hW_gru,'InputFrameNumberLimit',1000)
### Compiling network for Deep Learning FPGA prototyping ... ### Targeting FPGA bitstream zcu102_lstm_single. ### The network includes the following layers: 1 'sequenceinput' Sequence Input Sequence input with 3 dimensions (SW Layer) 2 'gru' GRU GRU with 128 hidden units (HW Layer) 3 'fc' Fully Connected 3 fully connected layer (HW Layer) 4 'regressionoutput' Regression Output mean-squared-error with response 'Response' (SW Layer) ### Notice: The layer 'sequenceinput' with type 'nnet.cnn.layer.ImageInputLayer' is implemented in software. ### Notice: The layer 'regressionoutput' with type 'nnet.cnn.layer.RegressionOutputLayer' is implemented in software. ### Compiling layer group: gru.wh ... ### Compiling layer group: gru.wh ... complete. ### Compiling layer group: gru.rh ... ### Compiling layer group: gru.rh ... complete. ### Compiling layer group: gru.w1 ... ### Compiling layer group: gru.w1 ... complete. ### Compiling layer group: gru.w2 ... ### Compiling layer group: gru.w2 ... complete. ### Compiling layer group: fc ... ### Compiling layer group: fc ... complete. ### Allocating external memory buffers: offset_name offset_address allocated_space _______________________ ______________ _________________ "InputDataOffset" "0x00000000" "16.0 kB" "OutputResultOffset" "0x00004000" "16.0 kB" "SchedulerDataOffset" "0x00008000" "676.0 kB" "SystemBufferOffset" "0x000b1000" "20.0 kB" "InstructionDataOffset" "0x000b6000" "4.0 kB" "FCWeightDataOffset" "0x000b7000" "204.0 kB" "EndOffset" "0x000ea000" "Total: 936.0 kB" ### Network compilation complete.
dn = struct with fields:
weights: [1×1 struct]
instructions: [1×1 struct]
registers: [1×1 struct]
syncInstructions: [1×1 struct]
constantData: {{1×2 cell} [1×128 double]}
ddrInfo: [1×1 struct]
resourceTable: [6×2 table]
Program Bitstream onto FPGA and Download Network Weights
To deploy the network on the Xilinx ZCU102 SoC hardware, run the deploy
function of the dlhdl.Workflow
object. This function uses the output of the compile
function to program the FPGA board by using the programming file. It also downloads the network weights and biases. The deploy
function starts programming the FPGA device and displays progress messages, and the required time to deploy the network.
deploy(hW_gru)
### FPGA bitstream programming has been skipped as the same bitstream is already loaded on the target FPGA. ### Deep learning network programming has been skipped as the same network is already loaded on the target FPGA.
Test Network
Prepare the test data for prediction. Normalize the test data using the statistics calculated from the training data. Forecast the values using the GRU layer network. To forecast the values of future time steps of a sequence, specify the targets as the test sequences with values shifted by one time step. In other words, at each time step of the input sequence, the GRU layer network learns to predict the value of the next time step.
load WaveformData.mat data = cellfun(@(x)x',data,UniformOutput=false); numChannels = size(data{1},1); numObservations = numel(data); idxTrain = 1:floor(0.9*numObservations); idxTest = floor(0.9*numObservations)+1:numObservations; dataTrain = data(idxTrain); dataTest = data(idxTest); for n = 1:numel(dataTrain) X = dataTrain{n}; XTrain{n} = X(:,1:end-1); TTrain{n} = X(:,2:end); end muX = mean(cat(2,XTrain{:}),2); sigmaX = std(cat(2,XTrain{:}),0,2); muT = mean(cat(2,TTrain{:}),2); sigmaT = std(cat(2,TTrain{:}),0,2); for n = 1:size(dataTest,1) X = dataTest{n}; XTest{n} = (X(:,1:end-1) - muX) ./ sigmaX; TTest{n} = (X(:,2:end) - muT) ./ sigmaT; end
Make predictions using the test data.
YTest_gru = predict(hW_gru,XTest{1},Profile = 'on');
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 115. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26856 0.00012 115 3134945 8070.3 gru.wh 448 0.00000 gru.rh 7539 0.00003 memSeparator_0 95 0.00000 memSeparator_2 184 0.00000 gru.w1 7460 0.00003 gru.w2 7608 0.00003 gru.sigmoid_1 222 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 308 0.00000 gru.multiplication_4 344 0.00000 gru.multiplication_1 294 0.00000 gru.addition_2 324 0.00000 gru.addition_1 294 0.00000 gru.tanh_1 238 0.00000 gru.multiplication_3 388 0.00000 gru.addition_3 298 0.00000 fc 420 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
To evaluate the accuracy, calculate the root mean squared error (RMSE) between the predictions and the target for each test sequence.
for i = 1:size(YTest_gru,1) rmse(i) = sqrt(mean((YTest_gru(i) - TTest{1}(i)).^2,"all")); end
Visualize the errors in a histogram. Lower values indicate greater accuracy.
figure histogram(rmse) xlabel("RMSE") ylabel("Frequency")
Calculate the mean RMSE over all test observations.
mean(rmse)
ans = single
0.7688
Forecast Future Time Steps
To forecast the values of multiple future time steps, when given an input time series or sequence, use the predictAndUpdateState
function. This function predicts time steps one at a time and updates the network state at each prediction. For each prediction, use the previous prediction as the input to the function.
Visualize one of the test sequences in a plot.
idx = 2; X_gru = XTest{idx}; T_gru = TTest{idx}; figure stackedplot(X_gru',DisplayLabels="Channel " + (1:numChannels)) xlabel("Time Step") title("Test Observation " + idx)
Open-Loop Forecasting
Open-loop forecasting predicts the next time step in a sequence using only the input data. When making predictions for subsequent time steps, you collect the true values form your data source and use those as input. For example, suppose that you want to predict the value for time step of a sequence by using data collected in time steps 1 through . To make predictions for time step , wait until you record the true value for time step and use that value as input to make the next prediction. Use open-loop forecasting when you have true values to provide to the network before making the next prediction.
Initialize the network state by resetting the state using the resetState
function, then make an initial prediction using the first few time steps of the input data. Update the network state by using the first 75 time steps of the input data.
resetState(hW_gru)
offset = 75;
[~,~] = predict(hW_gru,X_gru(:,1:offset),KeepState=true,Profile='on');
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 75. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26867 0.00012 75 2044941 8068.7 gru.wh 438 0.00000 gru.rh 7528 0.00003 memSeparator_0 86 0.00000 memSeparator_2 184 0.00000 gru.w1 7540 0.00003 gru.w2 7629 0.00003 gru.sigmoid_1 222 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 338 0.00000 gru.multiplication_4 294 0.00000 gru.multiplication_1 334 0.00000 gru.addition_2 294 0.00000 gru.addition_1 294 0.00000 gru.tanh_1 238 0.00000 gru.multiplication_3 288 0.00000 gru.addition_3 348 0.00000 fc 420 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
To forecast further predictions, loop over time steps and update the network state by using the predict
function and setting the KeepState
name-value argument to true
. Forecast values for the remaining time steps of the test observation by looping over the time steps of the input data and using them as input to the network. The first prediction is the value that corresponds to the time step offset + 1
.
numTimeSteps = size(X_gru,2);
numPredictionTimeSteps = numTimeSteps - offset;
Y_gru = predict(hW_gru,X_gru(:,offset+1:offset+numPredictionTimeSteps),KeepState=true,Profile='on');
### Finished writing input activations. ### Running a sequence of length 116. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26738 0.00012 116 3161519 8072.1 gru.wh 448 0.00000 gru.rh 7569 0.00003 memSeparator_0 86 0.00000 memSeparator_2 184 0.00000 gru.w1 7570 0.00003 gru.w2 7499 0.00003 gru.sigmoid_1 222 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 308 0.00000 gru.multiplication_4 294 0.00000 gru.multiplication_1 294 0.00000 gru.addition_2 294 0.00000 gru.addition_1 294 0.00000 gru.tanh_1 288 0.00000 gru.multiplication_3 288 0.00000 gru.addition_3 298 0.00000 fc 410 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
Compare the predictions with the target values.
figure t = tiledlayout(numChannels,1); title(t,"Open Loop Forecasting with GRU layer") for i = 1:numChannels nexttile plot(T_gru(i,:)) hold on plot(offset:numTimeSteps,[T_gru(i,offset) Y_gru(i,:)],'--') ylabel("Channel " + i) end xlabel("Time Step") nexttile(1) legend(["Input" "Forecasted"])
Closed-Loop Forecasting
Closed-loop forecasting predicts subsequent time steps in a sequence by using the previous predictions as input. In this case, the model does not require the true values to make the prediction. For example, suppose that you want to predict the value for time steps through of the sequence by using data collected in time steps 1 through . To make predictions for time step , use the predicted value for time step as input. Use closed-loop forecasting to forecast multiple subsequent time steps or when you do not have true values to provide to the network before making the next prediction.
Initialize the network state by resetting the state using the resetState
function, then make an initial prediction, Z,
using the first few time steps of the input data. Update the network state by using the first 75 time steps of the input data.
resetState(hW_gru)
[Z, ~] = predict(hW_gru,X_gru,KeepState=true,Profile='on');
### Resetting network state. ### Finished writing input activations. ### Running a sequence of length 191. Deep Learning Processor Profiler Performance Results LastFrameLatency(cycles) LastFrameLatency(seconds) FramesNum Total Latency Frames/s ------------- ------------- --------- --------- --------- Network 26956 0.00012 191 5206622 8070.5 gru.wh 448 0.00000 gru.rh 7549 0.00003 memSeparator_0 96 0.00000 memSeparator_2 185 0.00000 gru.w1 7539 0.00003 gru.w2 7608 0.00003 gru.sigmoid_1 221 0.00000 gru.sigmoid_2 224 0.00000 gru.multiplication_2 308 0.00000 gru.multiplication_4 324 0.00000 gru.multiplication_1 324 0.00000 gru.addition_2 324 0.00000 gru.addition_1 344 0.00000 gru.tanh_1 228 0.00000 gru.multiplication_3 308 0.00000 gru.addition_3 298 0.00000 fc 460 0.00000 memSeparator_1 168 0.00000 * The clock frequency of the DL processor is: 220MHz
To forecast further predictions, loop over time steps and update the network state by using the predict
function and setting the KeepState
name-value argument to true
. Forecast the next 200 time steps by iteratively passing the previously predicted value to the network. Because the network does not require the input data to make any further predictions, you can specify any number of time steps to forecast.
numPredictionTimeSteps = 200;
Xt_gru = Z(:,end);
Y_gru = zeros(numChannels,numPredictionTimeSteps);
fprintf("Run %d predictions:\n", numPredictionTimeSteps);
Run 200 predictions:
for t = 1:numPredictionTimeSteps [Y_gru(:,t),~] = predict(hW_gru,Xt_gru,KeepState=true); Xt_gru = Y_gru(:,t); end
Visualize the forecasted values in a plot.
offset = size(X_gru,2); numTimeSteps = offset + numPredictionTimeSteps; figure t = tiledlayout(numChannels,1); title(t,"Closed Loop Forecasting with GRU layer") for i = 1:numChannels nexttile plot(T_gru(i,1:offset)) hold on plot(offset:numTimeSteps,[T_gru(i,offset) Y_gru(i,:)],'--') ylabel("Channel " + i) end xlabel("Time Step") nexttile(1) legend(["Input" "Forecasted"])
Closed-loop forecasting allows you to forecast an arbitrary number of time steps, but can be less accurate when compared to open-loop forecasting because the network does not have access to the true values during the forecasting process.
Compare Network Predictions
Compare the predictions of the LSTM layer network to the GRU layer network. This image shows the comparison between the GRU layer network and LSTM layer network for open loop forecasting. The GRU layer network has a performance of 8070.5 frames per second and the LSTM layer network has a performance of 6463.1 frames per second. To learn how to deploy the LSTM layer network to an FPGA, see Run Sequence Forecasting on FPGA by Using Deep Learning HDL Toolbox.
This image shows the comparison between the GRU layer network and LSTM layer network for closed loop forecasting.
Version History
Introduced in R2020b
MATLAB コマンド
次の MATLAB コマンドに対応するリンクがクリックされました。
コマンドを MATLAB コマンド ウィンドウに入力して実行してください。Web ブラウザーは MATLAB コマンドをサポートしていません。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)