Incomplete Cholesky Decomposition

バージョン 1.0.0 (33 KB) 作成者: Royi Avital
Implementation of the Incomplete Cholesky Decomposition with Thresholding
ダウンロード: 46
更新 2022/2/27

Visitors

Sparse Incomplete Cholesky Decomposition

View Incomplete Cholesky Decomposition on File Exchange

Implementation of the Incomplete Cholesky Decomposition with few methods.
The project includes a C implementation with a MATLAB MEX wrapper.

The aim is to have 3 variants of the incomplete decomposition:

  1. Threshold (IC(\tau))
    Using a threshold, $ \tau $ to define which elements will be kept from the decomposition.
    It can be using global threshold or by a column.
    Implemented
  2. Pattern (IC(l))
    Filling elements which are up to l steps in the graph of the matrix A. For l = 0 called Zero Fill where filling zeros in elements not defined by the pattern.
    Also could be filled by a given pattern of sparsity (So given A as the pattern it matches l = 0).
    Not Implemented
  3. Number of Non Zero Elements (IC(p))
    Keeps the largest p elements per column.
    Not Implemented

Generating MATLAB MEX

  1. Download the repository.
  2. Run MakeMex in MATLAB with pre defined MATLAB MEX Compiler.
  3. Go through the Unit Tests and the Run Time Analysis.

The MEX Wrapper supports only Sparse Real Matrices of Type Double.

Performance

Comparing the performance with MATLAB's functions.

Decomposition

The MEX file and MATLAB's ICT were the most memory efficient.

Pre Conditioning (Solving the Linear System)

To Do

  • Move the array sorting related code to a dedicated repository with complete run time analysis.

References

引用

Royi Avital (2024). Incomplete Cholesky Decomposition (https://github.com/RoyiAvital/IncompleteCholeskyDecomposition), GitHub. 取得済み .

MATLAB リリースの互換性
作成: R2021a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート
1.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。