Industrial Machinery Anomaly Detection

Train an autoencoder on normal operating data from an industrial machine to predict anomalies.
ダウンロード: 805
更新 2021/9/30

編集メモ: This file was selected as MATLAB Central Pick of the Week

Industrial Machinery Anomaly Detection

View <Industrial Machinery Anomaly Detection using an Autoencoder> on File Exchange

This example applies various anomaly detection approaches to operating data from an industrial machine. Specifically it covers:

  • Extracting relevant features from industrial vibration timeseries data using the Diagnostic Feature Designer app
  • Anomaly detection using several statistical, machine learning, and deep learning techniques, including:
    • LSTM-based autoencoders
    • One-class SVM
    • Isolation forest
    • Robust covariance and Mahalanobis distance


This demo is implemented as a MATLAB® project and will require you to open the project to run it. The project will manage all paths and shortcuts you need.

To Run:

  1. Open the MATLAB Project AnomalyDetection.prj
  2. Open Parts 1-3 on the Project Shortcuts tab

MathWorks® Products (

Requires MATLAB® release R2021b or newer and:


The license for Industrial Machinery Anomaly Detection using an Autoencoder is available in the license.txt file in this GitHub repository.

Community Support

MATLAB Central

Copyright 2021 The MathWorks, Inc.


Rachel Johnson (2024). Industrial Machinery Anomaly Detection (, GitHub. 取得済み .

MATLAB リリースの互換性
作成: R2021a
R2020b 以降のリリースと互換性あり
Windows macOS Linux
タグ タグを追加

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート



Updated links


Renaming and minor edits


Improved visualizations and explanations


GitHub repository now located on matlab-deep-learning


この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。