Principal Component Analysis (PCA) on LANDSAT-8 imagery
Step's that we have followed;
1. Create a composite of bands. In our case, we have created a
composite of 11 bands of LANDSAT-8 images (Dated: 26-12-2020).
2. Convert each band into a column vector.
We will get an array of size n x p. Where p=11 in our case.
3. Standardise the data and apply PCA.
4. Reconstruct the original data.
引用
ABHILASH SINGH (2025). Principal Component Analysis (PCA) on LANDSAT-8 imagery (https://www.mathworks.com/matlabcentral/fileexchange/88582-principal-component-analysis-pca-on-landsat-8-imagery), MATLAB Central File Exchange. に取得済み.
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxタグ
謝辞
ヒントを得たファイル: Principal Component Analysis (PCA) on images in MATLAB (GUI)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!PCA on LANDSAT8 imagery
バージョン | 公開済み | リリース ノート | |
---|---|---|---|
1.0.0 |