Dense disparity map with kmeans and median filter

バージョン 1.0.0 (5.42 MB) 作成者: Victor Gonzalez
median filter and k-means clustering for dense disparity map estimation
ダウンロード: 109
更新 2020/5/25

median filter and k-means for dense disparity map estimation MATLAB functions to fill a sparse disparity map, in consequence, creating a dense disparity map. DEMO.m contains three examples with Tsukuba, Middlebury, and KITTI stereo datasets.

As input, the sparse disparity map must have NaN labels for occluded values, the reference RGB image and a minimum window size to perform the filtering. First the RGB reference image is color segmented from CIELab colorspace' 'a' and 'b' channels, then the median filtering stage is performed iteratively, beginning with a minimum window size, and then increasing its dimensions until there isn't NaN values or there isn't a value change between iterations

MEX functions were done with Armadillo linear algebra library, libgomp.dll is required to perform parallel processing

Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library for linear algebra. Journal of Open Source Software, Vol. 1, pp. 26, 2016.

引用

Victor Gonzalez (2025). Dense disparity map with kmeans and median filter (https://github.com/alx3416/Dense-disparity-map-with-kmeans-and-median-filter), GitHub. に取得済み.

Gonzalez-Huitron, Victor, et al. “Parallel Framework for Dense Disparity Map Estimation Using Hamming Distance.” Signal, Image and Video Processing, vol. 12, no. 2, Springer Science and Business Media LLC, Aug. 2017, pp. 231–38, doi:10.1007/s11760-017-1150-3.

その他のスタイルを見る
MATLAB リリースの互換性
作成: R2019b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート
1.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。