Euler's Elastica Follower Load

バージョン 1.0.0 (3.06 KB) 作成者: Ettore Barbieri
This class solves analytically the cantilevered Euler's Elastica (beam with large deformations) under a uniformly distributed load.
ダウンロード: 43
更新 2020/2/27

ライセンスの表示

The class computes the analytical solution for the inextensible beam and numerical solutions for comparison. It also computes the numerical solutions for the extensible case. Load are dimensionless, as q*L^3/(EI), with q being the load per unit width [N/m], L is the length of the beam, E is the Young Modulus, I the moment of inertia of the cross-section.

Examples of use:

__________ ANALYTICAL SOLUTION _______________
[kappa,theta,x,y] = FollowerDistributed.CompleteSolution(S,Q);

INPUT
S = array for the curvilinear abscissa (arclength) of the beam, normalised with respect to the length of the beam, with 0<=S<=1

Q = array for the dimensionless loads

OUTPUT
kappa = array for the curvatures, normalised with respect to 1/L
theta = array for the rotations
x,y = arrays for the Cartesian coordinates, normalised with respect to L

__________ NUMERICAL SOLUTION _______________
Simply change the name of the method

[kappa,theta,x,y] = FollowerDistributed.NumericalSolution(S,Q);

__________NUMERICAL SOLUTION EXTENSIBLE ____________
Change the name of the method

[kappa,theta,x,y] = FollowerDistributed.NumericalSolutionExtensible(S,Q,RLsq);

with RLsq a scalar
RLsq = (rho/L)^2 with rho being the radius of gyration of the cross-section.

引用

Ettore Barbieri (2026). Euler's Elastica Follower Load (https://jp.mathworks.com/matlabcentral/fileexchange/74373-euler-s-elastica-follower-load), MATLAB Central File Exchange. 取得日: .

MATLAB リリースの互換性
作成: R2019b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
タグ タグを追加
バージョン 公開済み リリース ノート
1.0.0