Constrain Least Mean Square Algorithm

バージョン 1.0.0 (1.74 KB) 作成者: Shujaat Khan
constrain least mean square with L1 and L2 constrains for regression problem
ダウンロード: 135
更新 2019/9/30

ライセンスの表示

In this code, a linear equation is used to generate sample data using a slope and bias. Later a Gaussian noise is added to the desired output. The noisy output and original input is used to determine the slope and bias of the linear equation using constrain-LMS algorithm. This implementation of constrain-LMS is based on batch update rule of gradient decent algorithm in which we use the sum of error instead of sample error. You can modify this code to create sample based update rule easily. There are three options of constrain I implemented in this code 'None', 'L1', and 'L2'. You can also change input/noise signal distributions as well to see which constrain work best for which type of signal/noise.

引用

Shujaat Khan (2024). Constrain Least Mean Square Algorithm (https://www.mathworks.com/matlabcentral/fileexchange/72899-constrain-least-mean-square-algorithm), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2019b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersSupport Vector Machine Regression についてさらに検索
謝辞

ヒントを得たファイル: Least Mean Square (LMS)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.0.0