Principal Component Analysis / Hebbian-based Max Eigenfilter

バージョン 1.0.0 (244 KB) 作成者: Shujaat Khan
Principal Component Analysis and Hebbian-based Maximum Eigenfilter
ダウンロード: 107
更新 2019/7/4

ライセンスの表示

% TASK 1. Let’s generate 800 random data on a 2-dimensional plane. The data
% are generated as 4 clusters, of which centers are located at (2,2), (-1,-2),
% (2,0) and (0,1). Each cluster has 200 data, of which distances from each
% center are randomly distributed with Gaussian distribution (standard
% deviation = 2, 2, 1, and 1, respectively).

% TASK 1-(a) Mark the generated data with dots (or circles) on a
% 2-dimensional space.
% TASK 1-(b) Conduct Principal Component Analysis based on eigenvector
% analysis. (You may use any library function for the
% eigenvector/eigenvalue calculation.) Show the principal axes and data
% projects on the axes.
% TASK 1-(c) Program and calculate the Hebbian-based maximum eigenfilter,
% and compare with the principal in (b).

引用

Shujaat Khan (2024). Principal Component Analysis / Hebbian-based Max Eigenfilter (https://www.mathworks.com/matlabcentral/fileexchange/72052-principal-component-analysis-hebbian-based-max-eigenfilter), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2019a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersDimensionality Reduction and Feature Extraction についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Principal Component Analysis and Hebbian-based Maximum Eigenfilter

バージョン 公開済み リリース ノート
1.0.0