## rollingMedian

バージョン 1.0.0 (21.1 KB) 作成者:
C-MEX for 2D Rolling Median

ダウンロード: 37

GitHub から

B = rollingMedian(A, R, C) Performs median filtering of the
matrix A in two dimensions with minimal edge effects and phase shift.
Inputs
------
A : Input Array
Dimensions Allowed: (M x N), (M x N x ?), (M x N x ? x ?), ...
As long as the leading dimensions of A (M & N) are nonzero, the
filter will operate on all trailing dimensions.
R : Filter Window Rows (1 < R < M / 2)
C : Filter Window Cols (1 < C < N / 2)

Outputs
-------
B : Output Array with the same dimensions and class as A.

Remarks
-------
rollingMedian uses a median-heap to compute the rolling median rather
than a sorting approach (i.e. sort all elements for each window).
The time complexity of a sorting approach (for e.g. quicksort, mergesort) is
O(M*N*R*C*log(R*C)).
The time complexity of the median heap approach is O(M*N*log(R*C)).

Edge Effects
------------
The left and right edges (1) are filtered first using
successively wider filter windows for all pixels whose col index is less
than C/2. The top and bottom edges (2) are filtered second using
successively taller filter windows for all pixels whose row index is less
than R/2.

Phase Distortion
----------------
The algorithm operates on 4 pointers simultaneously (one for each of the
top-left, bottom-left, top-right, and bottom-right of the array) and
moves from the edges of the array inward. This creates a south-east phase
shift in the top-left quadrant, a north-east phase shift in the
and a north-west phase shift in the bottom right quadrant. This may
create distortion at N/2 if C is even, and M/2 if R is even. If M or N is odd,
the median windows from both sides are advanced one row or col and the average
of both sides is used.

Filter Window Passes
--------------------
1a: cols 0 to C/2-1, rows 0 to M/2-1
1b: cols 0 to C/2-1, rows M-1 to M-M/2 (reverse)
1c: cols N-1 to N-C/2 (reverse), rows 0 to M/2-1
1d: cols N-1 to N-C/2 (reverse), rows M-1 to M-M/2 (reverse)
1B: if M%2 : (cols 0 to C/2-1, row M/2) & (col N-1 to N-C/2 (reverse), row M/2)
2a: cols C/2 to N/2-1, rows 0 to R/2-1
2b: cols C/2 to N/2-1, rows M-1 to M-R/2 (reverse)
2c: cols N-C/2-1 to N-N/2 (reverse), rows 0 to R/2-1
2d: cols N-C/2-1 to N-N/2 (reverse), rows M-1 to M-R/2 (reverse)
2B: if N%2 : (col N/2, rows 0 to R/2-1) & (cols N/2, rows M-1 to M-R/2 (reverse))
3a: cols C/2 to N/2-1, rows R/2 to M/2-1
3b: cols C/2 to N/2-1, rows M-R/2-1 to M-M/2 (reverse)
3c: cols N-C/2-1 to N-N/2 (reverse), rows M/2 to M/2-1
3d: cols N-C/2-1 to N-N/2 (reverse), rows M-R/2-1 to M-M/2 (reverse)
3B: if N%2 : (col N/2, row R/2 to M/2-1) & (col N/2, rows M-R/2-1 to M-M/2 (reverse))
3C: if M%2 : (cols C/2 to N/2-1, row M/2) & (cols N-C/2-1 to N-N/2 (reverse), row M/2)
3D: if M%2 & N%2: average of 3B & 3C at (col N/2, row M/2)

Class Support
-------------
uint8, int8, uint16, int16, uint32, int32, uint64, int64, float, double

Peter Cook 2019

### 引用

Peter Cook (2023). rollingMedian (https://github.com/peterfranciscook/rollingMedian), GitHub. 取得済み .

すべてのリリースと互換性あり
##### プラットフォームの互換性
Windows macOS Linux

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート
1.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。