ITPM

バージョン 1.0.2 (163 KB) 作成者: Arash Rabbani
Image-based throat/tube Permeability Model
ダウンロード: 238
更新 2022/10/10

Image-based Throat Permeability Model Image-based tube/throat permeability model is a mean to find the absolute permeability of tube with arbitrary cross-section this function can use 4 mthods for estimating the absolute permeability: 1) Latice Boltzmann simulation, 2) An artificial neural network with 1 input paramter , 3) Another artificial neural network with 7 input paramter and , 4) an empirical correlation which uses the average distance values of the transformed input images

Inputs: A: is a binary image in which void space is 0 and solid space is 1, this image shows the cross-section of the throat/tube Res: is the spatial resolution and it is expressed as micron/pixel Method: asks that what method you wanted to use for permeability calculation the values could be : LBM, EMP, ANN1P, and ANN7P. Plot: when put as 1 it will shows the LBM convergence charts and if set to zero it wont

Output: Absolute Permeability of throat/tube in Darcy

The LBM section is adopted from this source: Haslam, I. W., Crouch, R. S., & Seaïd, M. (2008). Coupled finite element–lattice Boltzmann analysis. Computer Methods in Applied Mechanics and Engineering, 197(51-52), 4505-4511.

If you are using ITPM in your research, please cite this article:

Hybrid Pore network and Lattice Boltzmann Permeability modeling accelerated by machine learning, Arash Rabbani, Masoud Babaei, Journal of Advances in Water Resources, 2019

Note: In order to run this code on MATLAB, you need to have Image Processing and Neural Fitting Toolboxes

Check out my tutorial videos on porous material modeling via Matlab on youtube:
https://www.youtube.com/playlist?list=PLaYes2m4FtR3DBM7TIb6oOZYI-tG4fHLd

Also, more description is in the GitHub address:
https://github.com/ArashRabbani/PaperCodes/tree/master/001-Image-based%20Throat%20Permeability%20Model

引用

Hybrid Pore network and Lattice Boltzmann Permeability modeling accelerated by machine learning, Arash Rabbani, Masoud Babaei, Journal of Advances in Water Resources, 2019

MATLAB リリースの互換性
作成: R2018b
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersStatistics and Machine Learning Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

GitHub の既定のブランチを使用するバージョンはダウンロードできません

バージョン 公開済み リリース ノート
1.0.2

link added

1.0.1

link added

1.0.0

この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。