File Exchange

image thumbnail

Efficient B-mode Ultrasound Image Reconstruction Using CNN

version 1.0.1 (52.2 MB) by Shujaat Khan
Efficient B-mode Ultrasound Image Reconstruction from Sub-sampled RF Data using Deep Learning


Updated 26 Nov 2018

From GitHub

View Version History

View license on GitHub

Yoon, Yeo Hun, Shujaat Khan, Jaeyoung Huh, and Jong Chul Ye. "Efficient B-mode Ultrasound Image Reconstruction from Sub-sampled RF Data using Deep Learning." IEEE transactions on medical imaging (2018).
MatConvNet (matconvnet-1.0-beta24)
Please run the matconvnet-1.0-beta24/matlab/vl_compilenn.m file to compile matconvnet.
There is instruction on ""
Please run the installation setup (install.m) and run some training examples.
Trained network
Trained network for 'SC2xRX4 (down-sampling) CNN' is uploaded.
Test data
Test data file is placed in 'data\cnn_sparse_view_init_multi_normal_dsr2_input64' folder.
The dimension of data are as follows -- Test_data = 64x384x1x2304 (channel x scanline x frame x depth)
To perform a test using proposed algorithm

-> Use 'DNN4x1_TestVal' as input data


-> You will get the reconstructed RF data in the 'data\cnn_sparse_view_init_multi_normal_dsr2_input64' directory.

-> Using standard delay-and-sum (DAS) beam-forming code construct a B-mode image. For our experiments we used a DAS beam-forming code provided by (Alpinion Co., Korea). A similar code can be downloaded from ('').

Cite As

Yoon, Yeo Hun, et al. “Efficient B-Mode Ultrasound Image Reconstruction from Sub-Sampled RF Data Using Deep Learning.” IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers (IEEE), 2018, pp. 1–1, doi:10.1109/tmi.2018.2864821.

View more styles

Comments and Ratings (1)

Viet Dinh

Please make a video tutorial

MATLAB Release Compatibility
Created with R2018b
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!