zeckendorf(N)

zeckendorf(N) using a greedy algorithm with binary exponentiation for computing Fib(n)
ダウンロード: 40
更新 2018/6/8

ライセンスの表示

Zeckendorf's theorem states that any positive integer, N, can be written as a sum of non-consecutive Fibonacci numbers uniquely. This is achieved by a greedy algorithm: the representation always starts with the largest Fibonacci number <= N.

Here, I used the definition of Fibonacci numbers as:
F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2).

For example: N = 100 = 89 + 8 + 3.

This code outputs the Zeckendorf representation of a positive integer N. Fibonacci numbers are computed using binary exponentiation of the Fibonacci matrix [1 1; 1 0].

引用

Karl Ezra Pilario (2025). zeckendorf(N) (https://www.mathworks.com/matlabcentral/fileexchange/67017-zeckendorf-n), MATLAB Central File Exchange. に取得済み.

MATLAB リリースの互換性
作成: R2017a
すべてのリリースと互換性あり
プラットフォームの互換性
Windows macOS Linux
カテゴリ
Help Center および MATLAB AnswersNumber Theory についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
バージョン 公開済み リリース ノート
1.1.0.0

Added a bit string representation output.

1.0.0.0

Updated the description.