Nonlinear System Identification using RBF Neural Network
In this simulation I implemented an RBF-NN for the zero order approximation of a nonlinear system. The simulation includes Monte Carlo simulation setup and the RBF NN code. For system estimation Gaussian kernels with fixed centers and spread are used. Whereas, the weights and the bias of the RBF-NN are optimized using the gradient descent-based adaptive learning algorithm.
Citation:
Khan, S., Naseem, I., Togneri, R. et al. Circuits Syst Signal Process (2017) 36: 1639. doi:10.1007/s00034-016-0375-7
https://link.springer.com/article/10.1007/s00034-016-0375-7
引用
Shujaat Khan (2026). Nonlinear System Identification using RBF Neural Network (https://jp.mathworks.com/matlabcentral/fileexchange/66322-nonlinear-system-identification-using-rbf-neural-network), MATLAB Central File Exchange. 取得日: .
MATLAB リリースの互換性
プラットフォームの互換性
Windows macOS Linuxカテゴリ
- AI and Statistics > Deep Learning Toolbox > Train Deep Neural Networks > Function Approximation, Clustering, and Control > Function Approximation and Clustering >
タグ
謝辞
ヒントを得たファイル: Function approximation using "A Novel Adaptive Kernel for the RBF Neural Networks", Mackey Glass Time Series Prediction using Radial Basis Function (RBF) Neural Network
ヒントを与えたファイル: Nonlinear System Identification using Spatio-Temporal RBF-NN
html/
| バージョン | 公開済み | リリース ノート | |
|---|---|---|---|
| 1.0.0.0 |
