Friction velocity estimation from the Reynold stress tensor

バージョン 1.4 (923 KB) 作成者: E. Cheynet
The friction velocity is computed from sonic anemometer data without the need to correct tilt angle errors

ダウンロード 152 件

更新 2020/5/2

GitHub から

GitHub でライセンスを表示

Summary

View Friction velocity estimate from the Reynolds stress tensor on File Exchange

The friction velocity is computed using a Matlab implementation of the method proposed by Klipp [1]. This method has the advantage to avoid the correction of instrument tilt by using the Reynolds stress tensor invariants. In [1], the friction velocity calculated for neutral conditions is found to be in good agreement with the standard method. Larger discrepancies are expected for non-neutral conditions or low wind speeds but produce a dimensionless shear that scales well with the non-dimensional Obukhov length. Type of application: Micrometeorology, surface layer turbulence.

Content

The present Matlab submission contains:

  • A function "frictionVelocity.m", which computes the friction velocity using the standard method or the one proposed in [1]. The latter method is more appropriate in complex terrain and a neutral atmosphere.
  • An example file "Example1.mlx" that compares the 2 methods
  • A data file "data.mat" that contains simulated wind turbulent velocity records

Reference

[1] Klipp, C. (2018). Turbulent friction velocity calculated from the Reynolds stress tensor. Journal of the Atmospheric Sciences, (2018).

引用

E. Cheynet (2022). Friction velocity estimation from the Reynold stress tensor (https://github.com/ECheynet/Klipp2018/releases/tag/v1.4), GitHub. 取得済み .

E. Cheynet. ECheynet/Klipp2018 v1.4. Zenodo, 2020, doi:10.5281/ZENODO.3782792.

その他のスタイルを見る
MATLAB リリースの互換性
作成: R2019b
R2014b 以降と互換性あり
プラットフォームの互換性
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。
この GitHub アドオンでの問題を表示または報告するには、GitHub リポジトリにアクセスしてください。